Abstract
Type 2 diabetes mellitus (T2DM) is an increasing problem in childhood; however type
1 diabetes mellitus (T1DM) remains by far the most common type of diabetes in this
age group. In this review we will focus on T1DM, because this will have the greatest
implication for patients diagnosed in childhood. During the atherosclerotic process,
several molecular, receptorial and cellular factors provide a continous mechanism
of vascular damage. In diabetic children this state seems to be enhanced and facilitated
so that accelerated atherosclerosis is associated with an increased risk of cardiovascular
events in respect to the non diabetic population. Hyperglycemia per se and associated with diabetes is an important risk factor for atherosclerosis. At
present a substantial part of children with diabetes do not reach satisfactory glycemic
control. Other risk factors for the development and progression of atherosclerosis
may be inherited or develop in the course of the disease: hypertension, dyslipidemia,
insulin resistance, obesity, cigarette smoking, physical inactivity, disturbance of
platelet function, coagulation and fibrinolysis. The development and progression of
atherosclerosis should be blocked at an early age, if possible. Primary prevention
to all risk factors for cardiovascular disease is important and intervention is indicated
if necessary. At the moment the best therapeutic strategy is to maintain metabolic
control at a physiologic level and perform screening and early intervention for vascular
complications.
Key words
Diabetes mellitus - hyperglycemia - atherosclerosis - TNF-α - macrophages - smooth
muscle cells - lipids - macroangiopathy - nitric oxide
References
- 1
Expert Committee on the Diagnosis and Classification of Diabetes Mellitus .
Report of the expert committee on the diagnosis and classification of diabetes mellitus.
Diabetes Care.
2003;
26
5-20
- 2
King H, Aubert RE, Herman WH.
Global burden of diabetes, 1995-2025: prevalence, numerical estimates, and projections.
Diabetes Care.
1998;
21
1414-1431
- 3
Dubois L, Girard M.
Early determinants of overweight at 4.5 years in a population-based longitudinal study.
Int J Obes (Lond).
30
610-617
- 4
Brownlee M.
Biochemistry and molecular cell biology of diabetic complications.
Nature.
2001;
414
813-820
- 5
Fuster V, Moreno PR, Fayad ZA, Corti R, Badiman JJ.
Atherothrombosis and high-risk claque.
JACC.
2005;
46
937-954
- 6
Entmacher PS, Root HF, Marks HH.
Longevity of diabetic patients in recent years.
Diabetes.
1964;
13
373-377
- 7
Orchard TJ, Stevens LK, Forrest KY-Z, Fuller JH.
Cardiovascular disease in insulin dependent diabetes mellitus: similar rates but different
risk factors in the US compared with Europe.
Int J Epidemiol.
1998;
27
976-983
- 8
Krolewski AS, Kosinski EJ, Warram JH, Leland OS, Busick EJ, Asmal AC, Rand LI, Christlieb AR,
Bradley RF, Kahn CR.
Magnitude and determinants of coronary artery disease in juvenile-onset, insulin-dependent
diabetes mellitus.
Am J Cardiol.
1987;
59
750-755
- 9
Laing SP, Swerdlow AJ, Slater SD, Botha JL, Burden AC, Waugh NR, Smith AW, Hill RD,
Bingley PJ, Patterson CC, Qiao Z, Keen H.
The British Diabetic Association Cohort Study, I: all-cause mortality in patients
with insulin-treated diabetes mellitus.
Diab Med.
1999;
16
459-465
- 10
Laing SP, Swerdlow AJ, Slater SD, Burden AC, Morris A, Waugh NR, Gathing W, Bingley PJ,
Patterson CC.
Mortality from heart disease in a cohort of 23,000 patients with insulin-treated diabetes.
Diabetologia.
2003;
46
760-765
- 11
Sijbrands EJG, Westendorp RGJ, Defesche JC, deMeier PHEM, Smelt AHM, Kastelein JPJ.
Mortality over two centuries in large pedigree with familial hypercholesterolaemia:
family tree mortality study.
BMJ.
2001;
322
1019-1022
- 12
Tuomiletho J, Borch-Johnsen K, Molarius A, Forsén T, Rastenyte D, Sarti C, Reunanen A.
Incidence of cardiovascular disease in type 1 (insulin-dependent) diabetic subjects
with and without diabetic nephropathy in Finland.
Diabetologia.
1998;
41
784-790
- 13
Koivisto VA, Stevens LK, Mattock M, Ebeling P, Muggeo M, Stephenson J, Idzior-Walus B.
The EURODIAB IDDM Complications. Study Group. Cardiovascular disease and its risk
factors in IDDM in Europe.
Diabetes Care.
1996;
19
689-697
- 14
Holman RL.
Atherosclerosis: a pediatric nutrition problem.
Am J Clin Nutr.
1961;
9
565-569
- 15
Koivisto VA, Stevens LK, Mattock M, Ebeling P, Muggeo M, Stephenson J, Idzior-Walus B.
The EURODIAB IDDM Complications. Study Group. Cardiovascular disease and its risk
factors in IDDM in Europe.
Diabetes Care.
1996;
19
689-697
- 16
Orchard TJ, Stevens LK, Forrest KY-Z, Fuller JH.
Cardiovascular disease in insulin dependent diabetes mellitus: similar rates but different
risk factors in the US compared with Europe.
Int J Epidemiol.
1998;
27
976-983
- 17
Strong JP, McGill HC.
The natural history of coronary atherosclerosis.
Am J Pathol.
1962;
40
37-49
- 18
Strong JP, Malcom GT, McMahan CA, Tracy RE, Newman WP, Herderick EE, Cornhill JF.
Prevalence and extent of atherosclerosis in adolescents and young adults: implications
for prevention from the Pathobiological Determinants of Atherosclerosis in Youth Study.
JAMA.
1999;
281
727-735
- 19
McGill Jr HC, McMahan CA, Malcom GT.
Effects of serum lipoproteins and smoking on atherosclerosis in young men and women.
Arterioscler Thromb Vasc Biol.
1997;
17
95-106
- 20
McGill Jr HC, McMahan CA, Tracy RE, Oalmann MC, Cornhill JF, Herderick EE, Strong JP.
Relation of a postmortem renal index of hypertension to atherosclerosis and coronary
artery size in young men and women.
Arterioscler Thromb Vasc Biol.
1998;
18
1108-1118
- 21
McGill Jr HC, McMahan CA, Malcom GT, Oalmann MC, Strong JP.
Relation of glycohemoglobin and adiposity to atherosclerosis in youth. Pathobiological
Determinants of Atherosclerosis in Youth (PDAY) Research Group.
Arterioscler Thromb Vasc Biol.
1995;
15
431-440
- 22
McGill Jr HC, Strong JP, Tracy RE, McMahan CA, Oalmann MC.
Relation of a postmortem renal index of hypertension to atherosclerosis in youth.
The Pathobiological Determinants of Atherosclerosis in Youth (PDAY) Research Group.
Arterioscler Thromb Vasc Biol.
1995;
15
2222-2228
- 23
Tuzcu EM, Kapadia SR, Tutar E, Ziada KM, Hobbs RE, McCarthy PM, Young JB, Nissen SE.
High Prevalence of Coronary Atherosclerosis in Asymptomatic Teenagers and Young Adults.
Evidence from Intravascular Ultrasound.
Circulation.
2001;
103
2705-2710
- 24
Nishimura RA, Edwards WD, Warnes CA, Reeder GS, Holmes Jr DR, Tajik AJ, Yock PG.
Intravascular ultrasound imaging: in vitro validation and pathologic correlation.
J Am Coll Cardiol.
1990;
16
145-154
- 25
Kennedy JW, Kaiser GC, Fisher LD, Fritz JK, Myers W, Mudd JG, Ryan TJ.
Clinical and angiographic predictors of operative mortality from the collaborative
study in coronary artery surgery (CASS).
Circulation.
1981;
63
793-802
- 26
Li S, Chen W, Srinivasan SR, Bond MG, Tang R, Urbina EM, Berenson GS.
Childhood cardiovascular risk factors and carotid vascular changes in adulthood. The
Bogalusa Heart Study.
JAMA.
2003;
290
2271-2276
- 27
Raitakari OT, Juonala M, Kähönen M, Taittonen L, Laitinen T, Mäki-Torkko N, Jävisalo MJ,
Uhari M, Jokinen E, Rönnamaa T, Åkerblom HK, Viikari JSA.
Cardiovascular risk factors in childhood and carotid artery intima-media thickness
in adulthood. The Cardiovascular Risk in Young Finns Study.
JAMA.
2003;
290
2277-2283
- 28
Faxon DP, Creager MA, Smith Jr SC, Pasternak RC, Olin JW, Bettmann MA, Criqui MH,
Milani RV, Loscalzo J, Kaufman JA, Jones DW, William H.
Atherosclerotic Vascular Disease Conference: Executive Summary: Atherosclerotic Vascular
Disease Conference Proceeding for Healthcare Professionals From a Special Writing
Group of the American Heart Association.
Circulation.
2004;
109
2595-2604
- 29
Naghavi M, Libby P, Falk E, Casscells SW, Litovsky S, Rumberger J, Badimon JJ, Stefanadis C,
Moreno P, Pasterkamp G, Fayad Z, Stone PH, Waxman S, Raggi P, Madjid M, Zarrabi A,
Burke A, Yuan C, Fitzgerald PJ, Siscovick DS, de Korte CL, Aikawa M, Airaksinen KEJ,
Assmann G, Becker CR, Chesebro JH, Farb A, Galis ZS, Jackson C, Jang I-K, Koenig W,
Lodder RA, March K, Demirovic J, Navab M, Priori SG, Rekhter MD, Bahr R, Grundy SM,
Mehran R, Colombo A, Boerwinkle E, Ballantyne C, Insull Jr W, Schwartz RS, Vogel R,
Serruys PW, Hansson GK, Faxon DP, Kaul S, Drexler H, Greenland P, Muller JE, Virmani R,
Ridker PM, Zipes DP, Shah PK, Willerson JT.
From Vulnerable Plaque to Vulnerable Patient: A Call for New Definitions and Risk
Assessment Strategies: Part I.
Circulation.
2003;
108
1664-1672
- 30
Geng YJ, Libby P.
Progression of atheroma: a struggle between death and procreation.
Arterioscler Thromb Vasc Biol.
2002;
22
1370-1380
- 31
van der Wal AC, Becker AE, van der Loos CM, Das PK.
Site of intimal rupture or erosion of thrombosed coronary atherosclerotic plaques
is characterized by an inflammatory process irrespective of the dominant plaque morphology.
Circulation.
1994;
89
36-44
- 32
Stary HC, Chandler AB, Dinsmore RE.
A definition of advanced types of atherosclerotic lesions and a histological classification
of atherosclerosis. A report from the Committee on Vascular Lesions of the Council
on Arteriosclerosis, American Heart Association.
Circulation.
1995;
92
1355-1374
- 33
Stary HC, Chandler AB, Glagov S, Guyton JR, Insull Jr W, Rosenfeld ME, Schaffer SA,
Schwartz CJ, Wagner WD, Wissler RW.
A definition of initial, fatty streak, and intermediate lesions of atherosclerosis.
A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis,
American Heart Association.
Circulation.
1994;
89
2462-2478
- 34
Stary HC.
Lipid and macrophage accumulations in arteries of children and the development of
atherosclerosis.
Am J Clin Nutr.
2000;
72
((Suppl 5))
1297S-1306S
- 35
Berenson GS, Wattigney WA, Tracy RE, Newman WP, Srinivasan SR, Webber LS, Dalferes Jr ER,
Strong JP.
Atherosclerosis of the aorta and coronary arteries and cardiovascular risk factors
in persons aged 6 to 30 years and studied at necropsy (The Bogalusa Heart Study).
Am J Cardiol.
1992;
70
851-858
- 36
McGill Jr HC, McMahan CA, Herderick EE, Malcom GT, Tracy RE, Strong JP.
Origin of atherosclerosis in childhood and adolescence.
Am J Clin Nutr.
2000;
72
((Suppl 5))
1307S-1315S
- 37
Ross R.
The pathogenesis of atherosclerosis: a perspective for the 1990s.
Nature.
1993;
362
((6423))
801-809
- 38
Hoymans VY, Bosmans JM, Ieven M, Vrints CJ.
Chlamydia pneumoniae and atherosclerosis.
Acta Chir Belg.
2002;
102
317-322
- 39
Liuba P, Pesonen E.
Infection and early atherosclerosis: does the evidence support causation?.
Acta Paediatr.
2005;
94
643-651
- 40
Santilli F, Cipollone F, Mezzetti A, Chiarelli F.
The role of nitric oxide in the development of diabetic angiopathy.
Horm Metab Res.
2004;
36
319-335
- 41
Garcia-Cardena G, Comander J, Anderson KR, Blackman BR, Gimbrone Jr MA.
Biomechanical activation of vascular endothelium as a determinant of its functional
phenotype.
Proc Natl Acad Sci USA.
2001;
98
4478-4485
- 42
Wasserman SM, Mehraban F, Komuves LG, Yang RB, Tomlinson JE, Zhang Y, Spriggs F, Topper JN.
Gene expression profile of human endothelial cells exposed to sustained fluid shear
stress.
Physiol Genomics.
2002;
12
13-23
- 43
Wernig F, Xu Q.
Mechanical stress-induced apoptosis in the cardiovascular system.
Prog Biophys Mol Biol.
2002;
78
105-137
- 44
Cunningham KS, Gotlieb AI.
The role of shear stress in the pathogenesis of atherosclerosis.
Lab Invest.
2005;
85
9-23
- 45
Dai G, Kaazempur-Mofrad MR, Natarajan S, Zhang Y, Vaughn S, Blackman BR, Kamm RD,
Garcia-Cardena G, Gimbrone Jr MA.
Distinct endothelial phenotypes evoked by arterial waveforms derived from atherosclerosis-susceptible
and -resistant regions of human vasculature.
Proc Natl Acad Sci USA.
2004;
101
14871-14876
- 46
Li S, Huang NF, Hsu S.
Mechanotransduction in endothelial cell migration.
J Cell Biochem.
2005;
96
1110-1126
- 47
Soccio RE, Breslow JL.
Intracellular cholesterol transport.
Arterioscler Thromb Vasc Biol.
2004;
24
1150-1160
- 48
Steinberg D.
Atherogenesis in perspective: hypercholesterolemia and inflammation as partners in
crime.
Nat Med.
2002;
8
1211-1217
- 49
Steinberg D.
Low density lipoprotein oxidation and its pathobiological significance.
J Biol Chem.
1997;
272
20963-20966
- 50
Knowles JW, Reddick RL, Jennette JC, Shesely EG, Smithies O, Maeda N.
Enhanced atherosclerosis and kidney dysfunction in eNOS(-/-)Apoe(-/-) mice are ameliorated
by enalapril treatment.
J Clin Invest.
2000;
105
451-458
- 51
Steinberg D, Witztum JL.
Is the oxidative modification hypothesis relevant to human atherosclerosis? Do the
antioxidant trials conducted to date refute the hypothesis?.
Circulation.
2002;
105
2107-2111
- 52
Fazio S, Linton MF.
The inflamed plaque: cytokine production and cellular cholesterol balance in the vessel
wall.
Am J Cardiol.
2001;
88
12E-15E
- 53
Collins T, Cybulsky MI.
NF-kB: pivotal mediator or innocent bystander in atherogenesis?.
J Clin Invest.
2001;
107
255-264
- 54
Skalen K, Gustafsson M, Rydberg EK, Hulten LM, Wiklund O, Innerarity TL, Boren J.
Subendothelial retention of atherogenic lipoproteins in early atherosclerosis.
Nature.
2002;
417
750-754
- 55
Schaefer EJ, Lamon-Fava S, Jenner JL, McNamara JR, Ordovas JM, Davis CE, Abolafia JM,
Lippel K, Levy RI.
Lipoprotein(a) levels and risk of coronary heart disease in men.
JAMA.
1994;
271
999-1003
- 56
Hajjar KA, Nachman RL.
The role of lipoprotein(a) in atherogenesis and thrombosis.
Annu Rev Med.
1996;
47
423-442
- 57
Poon M, Zhang X, Dunsky KG, Taubman MB, Harpel PC.
Apolipoprotein(a) induces monocyte chemotactic activity in human vascular endothelial
cells.
Circulation.
1997;
96
2514-2519
- 58
Libby P, Ridker PM, Maseri A.
Inflammation and atherosclerosis.
Circulation.
2002;
105
1135-1143
- 59
Libby P.
Inflammation in atherosclerosis.
Nature.
2002;
420
868-874
- 60
Kher N, Marsh JD.
Pathobiology of atherosclerosis-a brief review.
Semin Thromb Hemost.
2004;
30
665-672
- 61
Lusis AJ.
Atherosclerosis.
Nature.
2000;
407
233-241
- 62
Burke-Gaffney A, Brooks AV, Bogle RG.
Regulation of chemokine expression in atherosclerosis.
Vascul Pharmacol.
2002;
38
283-292
- 63
Cybulsky MI, Fries JW, Williams AJ, Sultan P, Eddy R, Byers M, Shows T, Gimbrone Jr MA,
Collins T.
Gene structure, chromosomal location, and basis for alternative mRNA splicing of the
human VCAM1 gene.
Proc Natl Acad Sci USA.
1991;
88
7859-7863
- 64
Li H, Cybulsky MI, Gimbrone Jr MA, Libby P.
An atherogenic diet rapidly induces VCAM-1, a cytokine-regulatable mononuclear leukocyte
adhesion molecule, in rabbit aortic endothelium.
Arterioscler Thromb.
1993;
13
197-204
- 65
Cybulsky MI, Iiyama K, Li H, Zhu S, Chen M, Iiyama M, Davis V, Gutierrez-Ramos JC,
Connelly PW, Milstone DS.
A major role for VCAM-1, but not ICAM-1, in early atherosclerosis.
J Clin Invest.
2001;
107
1255-1262
- 66
Hillis GS.
Soluble integrin adhesion receptors and atherosclerosis: much heat and a little light?.
J Hum Hypertens.
2003;
17
449-453
- 67
Takahashi K, Takeya M, Sakashita N.
Multifunctional roles of macrophages in the development and progression of atherosclerosis
in humans and experimental animals.
Med Electron Microsc.
2002;
35
179-203
- 68
Gu L, Okada Y, Clinton SK, Gerard C, Sukhova GK, Libby P, Rollins BJ.
Absence of monocyte chemoattractant protein-1 reduces atherosclerosis in low density
lipoprotein receptor-deficient mice.
Mol Cell.
1998;
2
275-281
- 69
Boring L, Gosling J, Cleary M, Charo IF.
Decreased lesion formation in CCR2-/- mice reveals a role for chemokines in the initiation
of atherosclerosis.
Nature.
1998;
394
894-897
- 70
Gosling J, Slaymaker S, Gu L, Tseng S, Zlot CH, Young SG, Rollins BJ, Charo IF.
MCP-1 deficiency reduces susceptibility to atherosclerosis in mice that overexpress
human apolipoprotein B.
J Clin Invest.
1999;
103
773-778
- 71
Boyle JJ.
Macrophage activation in atherosclerosis: pathogenesis and pharmacology of plaque
rupture.
Curr Vasc Pharmacol.
2005;
3
63-68
- 72
Febbraio M, Podrez EA, Smith JD, Hajjar DP, Hazen SL, Hoff HF, Sharma K, Silverstein RL.
Targeted disruption of the class B scavenger receptor CD36 protects against atherosclerotic
lesion development in mice.
J Clin Invest.
2000;
105
1049-1056
- 73
Yoshida H, Kondratenko N, Green S, Steinberg D, Quehenberger O.
Identification of the lectin-like receptor for oxidized low-density lipoprotein in
human macrophages and its potential role as a scavenger receptor.
Biochem J.
1998;
34
9-13
- 74
Mehta JL, Li DY.
Identification and autoregulation of receptor for OX-LDL in cultured human coronary
artery endothelial cells.
Biochem Biophys Res Commun.
1998;
248
511-514
- 75
Nagase M, Abe J, Takahashi K, Ando J, Hirose S, Fujita T.
Genomic organization and regulation of expression of the lectin-like oxidized low-density
lipoprotein receptor (LOX-1) gene.
J Biol Chem.
1998;
273
33702-33707
- 76
Peter Libby.
Vascular Biology of Atherosclerosis: Overview and State of the Art.
Am J Cardiol.
2003;
91
((Suppl))
3A-6A
- 77
Schonbeck U, Libby P.
CD40 signaling and plaque instability.
Circ Res.
2001;
89
1092-1103
- 78
Schonbeck U, Libby P.
The CD40/CD154 reactor/ligand dyad.
Cell Mol Life Sci.
2001;
58
4-43
- 79
Krettek A, Sukhova GK, Schonbeck U, Libby P.
Enhanced expression of CD44 variants in human atheroma and abdominal aortic aneurysm:
possible role for a feedback loop in endothelial cells.
Am J Pathol.
2004;
165
1571-1581
- 80
Boisvert WA, Curtiss LK, Terkeltaub RA.
Interleukin-8 and its receptor CXCR2 in atherosclerosis.
Immunol Res.
2000;
21
129-137
- 81
Boisvert WA.
Modulation of atherogenesis by chemokines.
Trends Cardiovasc Med.
2004;
14
161-165
- 82
Umehara H, Bloom ET, Okazaki T, Nagano Y, Yoshie O, Imai T.
Fractalkine in vascular biology: from basic research to clinical disease.
Arterioscler Thromb Vasc Biol.
2004;
24
34-40
- 83
Tangirala RK, Bischoff ED, Joseph SB, Wagner BL, Walczak R, Laffitte BA, Daige CL,
Thomas D, Heyman RA, Mangelsdorf DJ, Wang X, Lusis AJ, Tontonoz P, Schulman IG.
Identification of macrophage liver X receptors as inhibitors of atherosclerosis.
Proc Natl Acad Sci USA.
2002;
99
11896-11901
- 84
Young JL, Libby P, Schonbeck U.
Cytokines in the pathogenesis of atherosclerosis.
Thromb Haemost.
2002;
88
554-567
- 85
Lim YC, Garcia-Cardena G, Allport JR, Zervoglos M, Connolly AJ, Gimbrone Jr MA, Luscinskas FW.
Heterogeneity of endothelial cells from different organ sites in T-cell subset recruitment.
Am J Pathol.
2003;
162
1591-1601
- 86
Tall AR, Jiang X, Luo Y, Silver D.
1999 George Lyman Duff memorial lecture: lipid transfer proteins, HDL metabolism,
and atherogenesis.
Arterioscler Thromb Vasc Biol.
2000;
20
1185-1188
- 87
Lawn RM, Wade DP, Garvin MR, Wang X, Schwartz K, Porter JG, Seilhamer JJ, Vaughan AM,
Oram JF.
The Tangier disease gene product ABC1 controls the cellular apolipoprotein-mediated
lipid removal pathway.
J Clin Invest.
1999;
104
R25-R31
- 88
Choudhury RP, Rong JX, Trogan E, Elmalem VI, Dansky HM, Breslow JL, Witztum JL, Fallon JT,
Fisher EA.
High-density lipoproteins retard the progression of atherosclerosis and favorably
remodel lesions without suppressing indices of inflammation or oxidation.
Arterioscler Thromb Vasc Biol.
2004;
24
1904-1909
- 89
Accad M, Smith S, Newland D, Sanan D, King JL, Linton M, Fazio S, Farese JR.
Massive zanthomatosis and altered composition of atherosclerotic lesions in hyperlipidemic
mice lacking acyl CoA:cholesterol acyltransferase 1.
J Clin Invest.
2000;
105
711-719
- 90
Yagyu H, Kitamine T, Osuga J, Tozawa R, Chen Z, Kaji Y, Oka T, Perrey S, Tamura Y,
Ohashi K, Okazaki H, Yahagi N, Shionoiri F, Iizuka Y, Harada K, Shimano H, Yamashita H,
Gotoda T, Yamada N, Ishibashi S.
Absence of ACAT-1 attenuates atherosclerosis but causes dry eye and cutaneous xanthomatosis
in mice with congenital hyperlipidemia.
J Biol Chem.
2000;
275
21324-21330
- 91
Zwarts KY, Clee SM, Zwinderman AH, Engert JC, Singaraja R, Loubser O, James E, Roomp K,
Hudson TJ, Jukema JW, Kastelein JJP, Hayden MR.
ABCA1 regulatory variants influence coronary artery disease independent of effects
on plasma lipid levels.
Clin Genet.
2002;
61
115-125
- 92
Chawla A, Boisvert WA, Lee CH, Laffitte BA, Barak Y, Joseph SB, Liao D, Nagy L, Edwards PA,
Curtiss LK, Evans RM, Tontonoz P.
A PPAR gamma-LXR-ABCA1 pathway in macrophages is involved in cholesterol efflux and
atherogenesis.
Mol Cell.
2001;
7
161-171
- 93
Repa JJ, Turley SD, Lobaccaro JA, Medina J, Li L, Lustig K, Shan B, Heyman RA, Dietschy JM,
Mangelsdorf DJ.
Regulation of absorption and ABC1-mediated efflux of cholesterol by RXR heterodimers.
Science.
2000;
289
1524-1529
- 94
Ricote M, Valledor AF, Glass CK.
Decoding transcriptional programs regulated by PPARs and LXRs in the macrophage: effects
on lipid homeostasis, inflammation, and atherosclerosis.
Arterioscler Thromb Vasc Biol.
2004;
24
230-239
- 95
Linton MF, Fazio S.
Macrophages, inflammation, and atherosclerosis.
Int J Obes Relat Metab Disord.
2003;
27
((Suppl 3))
S35-S40
- 96
O'Brien KD, Vuletic S, McDonald TO, Wolfbauer G, Lewis K, Tu AY, Marcovina S, Wight TN,
Chait A, Albers JJ.
Cell-associated and extracellular phospholipid transfer protein in human coronary
atherosclerosis.
Circulation.
2003;
108
270-274
- 97
Griendling KK, Minieri CA, Ollerenshaw JD, Alexander RW.
Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth
muscle cells.
Circ Res.
1994;
74
1141-1148
- 98
Huraux C, Makita T, Kurz S, Yamaguchi K, Szlam F, Tarpey MM, Wilcox JN, Harrison DG,
Levy JH.
Superoxide production, risk factors, and endothelium-dependent relaxations in human
internal mammary arteries.
Circulation.
1999;
99
53-59
- 99
Zhang H, Schmeisser A, Garlichs CD, Plotze K, Damme U, Mugge A, Daniel WG.
Angiotensin II-induced superoxide anion generation in human vascular endothelial cells:
role of membrane-bound NADH-/NADPH-oxidases.
Cardiovasc Res.
1999;
44
215-222
- 100
Ogawa S, Glass CK.
Factor XIIIA (cross)links AT1 receptors to atherosclerosis.
Cell.
2004;
119
313-314
- 101
Vaughan DE, Lazos SA, Tong K.
Angiotensin II regulates the expression of plasminogen activator inhibitor-1 in cultured
endothelial cells.
J Clin Invest.
1995;
95
995-1001
- 102
Ridker PM, Gaboury CL, Conlin PR, Seely EW, Williams GH, Vaughan DE.
Stimulation of plasminogen activator inhibitor in vivo by infusion of angiotensin II. Evidence of a potential interaction between the renin-angiotensin
system and fibrinolytic function.
Circulation.
1993;
87
1969-1973
- 103
Brown NJ, Agirbasli MA, Williams GH, Litchfield WR, Vaughan DE.
Effect of activation and inhibition of the renin-angiotensin system on plasma PAI-1.
Hypertension.
1998;
32
965-977
- 104
Yusuf S, Sleight P, Pogue J, Bosch J, Davies R, Dagenais G.
The Heart Outcomes Prevention Evaluation Study Investigators. Effects of an angiotensin-converting-enzyme
inhibitor, ramipril, on death from cardiovascular causes, myocardial infarction, and
stroke in high-risk patients.
N Engl J Med.
2000;
342
145-153
- 105
Nickenig G.
Central role of the AT(1)-receptor in atherosclerosis.
J Hum Hypertens.
2002;
16
((Suppl 3))
S26-S33
- 106
Henrion D, Kubis N, Levy B.
Physiological and pathophysiological functions of the AT2 subtype receptor of angiotensin
II from large arteries to the microcirculation.
Hypertension.
2001;
38
1150-1157
- 107
Barger AC, Beeuwkes R, Lainet L, Silverman KJ.
Hypothesis: vasa vasorum and neovascularization of human coronary arteries.
N Engl J Med.
1984;
310
175-177
- 108
Moulton KS, Heller E, Konerding MA, Flynn E, Palinski W, Folkman J.
Angiogenesis inhibitors endostatin or TNP-470 reduce intimal neovascularization and
plaque growth in apolipoprotein E-deficient mice.
Circulation.
1999;
99
1726-1732
- 109
Bornstein P.
Thrombospondins: structure and regulation of expression.
FASEB J.
1992;
6
3290-3299
- 110
Silverstein RL, Nachman RL.
Angiogenesis and Atherosclerosis The Mandate Broadens.
Circulation.
1999;
100
783-785
- 111
Stary HC.
The Development of Calcium Deposits in Atherosclerotic Lesions and Their Persistence
After Lipid Regression.
Am J Cardiol.
2001;
88
((Suppl))
16E-19E
- 112
Paulsson G, Zhou X, Tornquist E, Hansson GK.
Oligoclonal T cell expansions in atherosclerotic lesions of apolipoprotein E-deficient
mice.
Arterioscler Thromb Vasc Biol.
2000;
20
10-17
- 113
Zieske AW, Malcom GT, Strong JP.
Natural history and risk factors of atherosclerosis in children and youth: the PDAY
study.
Pediatr Pathol Mol Med.
2002;
21
213-237
- 114
Vijayagopal P, Glancy DL.
Macrophages stimulate cholesteryl ester accumulation in cocultured smooth muscle cells
incubated with lipoprotein-proteoglycan complex.
Arterioscler Thromb Vasc Biol.
1996;
16
1112-1121
- 115
Stein GS, Lian JB.
Molecular mechanisms mediating proliferation/differentiation interrelationships during
progressive development of the osteoblast phenotype.
Endocr Rev.
1993;
14
424-442
- 116
Bostrom K, Demer LL.
Regulatory mechanisms in vascular calcification.
Crit Rev Eukaryot Gene Expr.
2000;
12
151-158
- 117
Hungerford JE, Little CD.
Developmental biology of the vascular smooth muscle cell: building a multilayered
vessel wall.
J Vasc Res.
1999;
36
2-27
- 118
Bostrom K, Watson KE, Horn S, Wortham C, Herman IM, Demer LL.
Bone morphogenetic protein expression in human atherosclerotic lesions.
J Clin Invest.
1993;
91
1800-1809
- 119
Bostrom K.
Insights into the Mechanism of Vascular Calcification.
Am J Cardiol.
2001;
88
((Suppl))
20E-22E
- 120
Humphries SE, Martin S, Cooper J, Miller G.
Interaction between smoking and the stromelysin-1 (MMP3) gene 5A/6A promoter polymorphism
and risk of coronary heart disease in healthy men.
Ann Hum Genet.
2002;
66
343-352
- 121
Liu J, Sukhova GK, Sun JS, Xu WH, Libby P, Shi GP.
Lysosomal cysteine proteases in atherosclerosis.
Arterioscler Thromb Vasc Biol.
2004;
24
1359-1366
- 122
Dollery CM, Owen CA, Sukhova GK, Krettek A, Shapiro SD, Libby P.
Neutrophil elastase in human atherosclerotic plaques: production by macrophages.
Circulation.
2003;
107
2829-2836
- 123
Carmeliet P.
Proteinases in cardiovascular aneurysms and rupture: targets for therapy?.
J Clin Invest.
2000;
105
1519-1520
- 124
Sugiyama S, Kugiyama K, Aikawa M, Nakamura S, Ogawa H, Libby P.
Hypochlorous acid, a macrophage product, induces endothelial apoptosis and tissue
factor expression: involvement of myeloperoxidase-mediated oxidant in plaque erosion
and thrombogenesis.
Arterioscler Thromb Vasc Biol.
2004;
24
1309-1314
- 125
Davies MJ.
The pathophysiology of acute coronary syndxromes.
Heart.
2000;
83
361-366
- 126
Davies M.
Stability and instability: two faces of coronary atherosclerosis. The Paul Dudley
White Lecture 1995.
Circulation.
1996;
94
2013-2020
- 127
Glass CK, Witztum JL.
Atherosclerosis The Road Ahead.
Cell.
2001;
104
503-516
- 128
Cines DB, Pollak ES, Buck CA, Loscalzo J, Zimmerman GA, McEver RP, Pober JS, Wick TM,
Konkle BA, Schwartz BS, Barnathan ES, McCrae KR, Hug BA, Schmidt AM, Stern DM.
Endothelial cells in physiology and in the pathophysiology of vascular disorders.
Blood.
1998;
91
3527-3561
- 129
Brownlee M.
The pathobiology of diabetic complications: a unifying mechanism.
Diabetes.
2005;
54
1615-1625
- 130
Schrijvers BF, De Vriese AS, Flyvbjerg A.
From hyperglycemia to diabetic kidney disease: the role of metabolic, hemodynamic,
intracellular factors and growth factors/cytokines.
Endocr Rev.
2004;
25
971-1010
- 131
Wang R, Kudo M, Yokoyama M, Asano G.
Roles of advanced glycation endproducts (AGE) and receptor for AGE on vascular smooth
muscle cell growth.
EMBO J.
2004;
23
4096-4105
- 132
Stitt AW, Frizzell N, Thorpe SR.
Advanced glycation and advanced lipoxidation: possible role in initiation and progression
of diabetic retinopathy.
Curr Pharm Des.
2004;
10
3349-3360
- 133
Stevens FJ.
Amyloid formation: an emulation of matrix protein assembly?.
Amyloid.
2004;
11
232-244
- 134
He Z, King GL.
Microvascular complications of diabetes.
Endocrinol Metab Clin North Am.
2004;
33
215-238
- 135
Yamagishi S, Imaizumi T.
Diabetic vascular complications: pathophysiology, biochemical basis and potential
therapeutic strategy.
Curr Pharm Des.
2005;
11
2279-2299
- 136
The Diabetes Control and Complications Trial Research Group .
The effect of intensive treatment of diabeteson the development and progression of
long-term complications in insulin-dependent diabetes mellitus.
N Engl J Med.
1993;
329
977-986
- 137
UK Prospective Diabetes Group (UKPDS) .
Intensive blood-glucose control with sulphonulureas or insulin compared with conventional
treatment and risk of complications in patients with type 2 diabetes. (UKPDS 33).
Lancet.
1998;
352
837-853
- 138
Assert R, Scherk G, Bumbure A, Pirags V, Schatz H, Pfeiffer AF.
Regulation of protein kinase C by short term hyperglycemia in human platelets in vivo and in vitro.
Diabetologia.
2001;
44
188-195
- 139
Nishikawa T, Edelstein D, Xu XL, Yamagishi S, Matsumura T, Kaneda Y, Yorek MA, Beebe D,
Oates PJ, Hammes HP, Giardino I, Brownlee M.
Normalizing mitochondrial superoxide production blocks three pathways of hyperglycemic
damage.
Nature.
2000;
404
787-790
- 140
Kamiya H, Nakamura J, Hamada Y, Nakashima E, Naruse K, Kato K, Yasuda Y, Hotta N.
Polyol pathway and protein kinase C activity of rat Schwannoma cells.
Diabetes Metab Res Rev.
2003;
19
131-139
- 141
Sheetz MJ, King L.
Molecular understanding of hyperglycemia's adverse effects for diabetic complications.
JAMA.
2002;
288
2579-2588
- 142
Rask-Madsen C, King GL.
Proatherosclerotic mechanisms involving protein kinase C in diabetes and insulin resistance.
Arterioscler Thromb Vasc Biol.
2005;
25
487-496
- 143
Kim JK, Fillmore JJ, Sunshine MJ, Albrecht B, Higashimori T, Kim DW, Liu ZX, Soos TJ,
Cline GW, O'Brien WR, Littman DR, Shulman GI.
PKC-theta knockout mice are protected from fat-induced insulin resistance.
J Clin Invest.
2004;
114
823-827
- 144
Verma S, Anderson TJ.
The most commonly asked questions about endothelial function in cardiology.
Cardiol Rev.
2001;
9
250-252
- 145
Johnstone MT, Creager SJ, Scales KM, Cusco JA, Lee BK, Creager MA.
Impaired endothelium-dependent vasodilation in patients with insulin-dependent diabetes
mellitus. Impaired endothelium-dependent vasodilation in patients with insulin-dependent
diabetes mellitus.
Circulation.
1993;
88
2510-2516
- 146
De Vriese AS, Verbeuren TJ, Van de Voorde J, Lameire NH, Vanhoutte PM.
Endothelial dysfunction in diabetes.
Br J Pharmacol.
2000;
130
963-974
- 147
Rosen P, Nawroth PP, King G, Moller W, Tritschler HJ, Packer L.
The role of oxidative stress in the onset and progression of diabetes and its complications:
a summary of a Congress Series sponsored by UNESCO-MCBN, the American Diabetes Association
and the German Diabetes Society.
Diabetes Metab Res Rev.
2001;
17
189-212
- 148
Creager MA, Luscher TF, Cosentino F, Beckman JA.
Diabetes and vascular disease: pathophysiology, clinical consequences, and medical
therapy: Part I.
Circulation.
2003;
108
1527-1532
- 149
Vlassara H, Cai W, Crandall J, Goldberg T, Oberstein R, Dardaine V, Peppa M, Rayfield EJ.
Inflammatory mediators are induced by dietary glycotoxins, a major risk factor for
diabetic angiopathy.
Proc Natl Acad Sci USA.
2002;
99
15596-15601
, Erratum in: Proc Natl Acad Sci U S A 2003; 100: 763
- 150
Berg TJ, Dahl-Jorgensen K, Torjesen PA, Hanssen KF.
Increased serum levels of advanced glycation end products (AGEs) in children and adolescents
with IDDM.
Diabetes Care.
1997;
20
1006-1008
- 151
Chiarelli F, de Martino M, Mezzetti A, Catino M, Morgese G, Cuccurullo F, Verrotti A.
Advanced glycation end products in children and adolescents with diabetes: relation
to glycemic control and early microvascular complications.
J Pediatr.
1999;
134
486-491
- 152
Miyazaki A, Nakayama H, Horiuchi S.
Scavenger receptors that recognize advanced glycation end products.
Trends Cardiovasc Med.
2002;
12
258-262
- 153
Cipollone F, Iezzi A, Fazia M, Zucchelli M, Pini B, Cuccurullo C, De Cesare D, De
Blasis G, Muraro R, Bei R, Chiarelli F, Schmidt AM, Cuccurullo F, Mezzetti A.
The receptor RAGE as a progression factor amplifying arachidonate-dependent inflammatory
and proteolytic response in human atherosclerotic plaques: role of glycemic control.
Circulation.
2003;
108
1070-1077
- 154
Bierhaus A, Humpert PM, Morcos M, Wendt T, Chavakis T, Arnold B, Stern DM, Nawroth PP.
Understanding RAGE, the receptor for advanced glycation end products.
J Mol Med.
2005;
83
876-886
- 155
Vlassara H, Palace MR.
Diabetes and advanced glycation endproducts.
J Intern Med.
2002;
251
87-101
- 156
Libby P, Plutzky J.
Editorial, Diabetic Macrovascular Disease The Glucose Paradox?.
Circulation.
2002;
106
2760-2763
- 157
Aronson D.
Cross-linking of glycated collagen in the pathogenesis of arterial and myocardial
stiffening of aging and diabetes.
J Hypertens.
2003;
21
3-12
- 158
Reddy GK.
AGE-related cross-linking of collagen is associated with aortic wall matrix stiffness
in the pathogenesis of drug-induced diabetes in rats.
Microvasc Res.
2004;
68
132-142
- 159
Stitt AW, He C, Vlassara H.
Characterization of the advanced glycation end-product receptor complex in human vascular
endothelial cells.
Biochem Biophys Res Commun.
1999;
256
549-556
- 160
McFarlane S, Glenn JV, Lichanska AM, Simpson DA, Stitt AW.
Characterisation of the advanced glycation endproduct receptor complex in the retinal
pigment epithelium.
Br J Ophthalmol.
2005;
89
107-112
- 161
Bucciarelli LG, Wendt T, Rong L, Lalla E, Hofmann MA, Goova MT, Taguchi A, Yan SF,
Yan SD, Stern DM, Schmidt AM.
RAGE is a multiligand receptor of the immunoglobulin superfamily: implications for
homeostasis and chronic disease.
Cell Mol Life Sci.
2002;
59
1117-1128
- 162
Yonekura H, Yamamoto Y, Sakurai S, Watanabe T, Yamamoto H.
Roles of the receptor for advanced glycation endproducts in diabetes-induced vascular
injury.
J Pharmacol Sci.
2005;
97
305-311
- 163
Ramasamy R, Vannucci SJ, Yan SS, Herold K, Yan SF, Schmidt AM.
Advanced glycation end products and RAGE: a common thread in aging, diabetes, neurodegeneration,
and inflammation.
Glycobiology.
2005;
15
16-28
- 164
Alikhani Z, Alikhani M, Boyd CM, Nagao K, Trackman PC, Graves DT.
Advanced glycation end products enhance expression of pro-apoptotic genes and stimulate
fibroblast apoptosis through cytoplasmic and mitochondrial pathways.
J Biol Chem.
2005;
280
12087-12095
- 165
Sims TJ, Rasmussen LM, Oxlund H, Bailey AJ.
The role of glycation cross-links in diabetic vascular stiffening.
Diabetologia.
1996;
39
964-951
- 166
Schmidt AM, Stern D.
Atheroclerosis and diabetes.
Curr Atheroscler Rep.
2000;
2
430-436
- 167
Wendt TM, Tanji N, Guo J, Kislinger TR, Qu W, Lu Y, Bucciarelli LG, Rong LL, Moser B,
Markowitz GS, Stein G, Bierhaus A, Liliensiek B, Arnold B, Nawroth PP, Stern DM, D'Agati VD,
Schmidt AM.
RAGE drives the development of glomerulosclerosis and implicates podocyte activation
in the pathogenesis of diabetic nephropathy.
Am J Pathol.
2003;
162
1123-1137
- 168
Bucciarelli LG, Wendt T, Qu W, Lu Y, Lalla E, Rong LL, Goova MT, Moser B, Kislinger T,
Lee DC, Kashyap Y, Stern DM, Schmidt AM.
RAGE blockade stabilizes established atherosclerosis in diabetic apolipoprotein E-null
mice.
Circulation.
2002;
106
2827-2835
- 169
Yan SF, Ramasamy R, Naka Y, Schmidt AM.
Glycation, inflammation, and RAGE: a scaffold for the macrovascular complications
of diabetes and beyond.
Circ Res.
2003;
93
1159-1169
- 170
Mukhopadhyay S, Mukherjee TK.
Bridging advanced glycation end product, receptor for advanced glycation end product
and nitric oxide with hormonal replacement/estrogen therapy in healthy versus diabetic
postmenopausal women: a perspective.
Biochim Biophys Acta.
2005;
1745
145-155
- 171
Stitt AW, He C, Friedman S, Scher L, Rossi P, Ong L, Founds H, Li YM, Bucala R, Vlassara H.
Elevated AGE-modified ApoB in sera of euglycemic, normolipidemic patients with atherosclerosis:
relationship to tissue AGEs.
Mol Med.
1997;
3
617-627
- 172
Binder CJ, Chang M-K, Shaw PX, Miller YI, Hartvigsen K, Dewan A, Witztum JL.
Innate and acquired immunity in atherogenesis.
Nat Med.
2002;
8
1218-1226
- 173
Hussain MJ, Peakman M, Gallati H, Lo SS, Hawa M, Viberti GC, Watkins PJ, Leslie RD,
Vergani D.
Elevated serum levels of macrophage-derived cytokines precede and accompany the onset
of IDDM.
Diabetologia.
1996;
39
60-69
- 174
Uemura S, Matsushita H, Li W, Glassford AJ, Asagami T, Lee KH, Harrison DG, Tsao PS.
Diabetes mellitus enhances vascular matrix metalloproteinase activity: role of oxidative
stress.
Circ Res.
2001;
88
1291-1298
- 175
Schneider DJ.
Abnormalities of coagulation, platelet function, and fibrinolysis associated with
syndromes of insulin resistance.
Coron Artery Dis.
2005;
16
473-476
- 176
Li Y, Woo V, Bose R.
Platelet hyperactivity and abnormal Ca(2+) homeostasis in diabetes mellitus.
Am J Physiol Heart Circ Physiol.
2001;
280
H1480-H1489
- 177
Ceriello A, Giugliano D, Quatraro A, Dello Russo P, Torella R.
Blood glucose may condition factor VII levels in diabetic and normal subjects.
Diabetologia.
1988;
31
889-891
- 178
Ceriello A, Giugliano D, Quatraro A, Marchi E, Barbanti M, Lefebvre P.
Evidence for a hyperglycemia-dependent decrease of antithrombin III-thrombin complex
formation in humans.
Diabetologia.
1990;
33
163-167
- 179
Ceriello A, Giacomello R, Stel G, Motz E, Taboga C, Tonutti L, Pirisi M, Falleti E,
Bartoli E.
Hyperglycemia-induced thrombin formation in diabetes. The possible role of oxidative
stress.
Diabetes.
1995;
44
924-928
- 180
Moreno PR, Fuster V.
New aspects in the pathogenesis of diabetic atherothrombosis.
J Am Coll Cardiol.
2004;
44
2293-2300
- 181
Nordt TK, Bode C.
Impaired endogenous fibrinolysis in diabetes mellitus.
Semin Thromb Hemost.
2000;
26
495-501
- 182
Carr ME.
Diabetes mellitus: a hyperocoagulable state.
J Diabetes Complications.
2001;
15
44-54
- 183
Nathan DM, Cleary PA, Backlund JY, Genuth SM, Lachin JM, Orchard TJ, Raskin P, Zinman B.
Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and
Complications (DCCT/EDIC) Study Research Group. Intensive diabetes treatment and cardiovascular
disease in patients with type 1 diabetes.
N Engl J Med.
2005;
353
2643-2653
Correspondence
Francesco ChiarelliM.D., Ph.D.
Department of Pediatrics·University of Chieti
Via dei Vestini 5
66100 Chieti
Italy
Telefon: +39/0871/35 80 15
Fax: +39/0871/57 48 31
eMail: chiarelli@unich.it