ABSTRACT
The study of hematopoiesis, the generation of blood cell lines throughout life, has
provided conceptual, experimental, and therapeutic approaches useful to all stem cell
biologists. From a clinical perspective, no other area of stem cell biology has been
applied as successfully as has transplantation of bone marrow and cord blood for the
treatment of blood diseases. In the last few years, research in stem cell biology
has expanded rapidly to include the study of stem cells from embryonic, fetal, and
various adult tissues, engendering novel perspectives regarding the identity, origin,
and full therapeutic potential of tissue-specific stem cells. Rather than focusing
on the use of cord blood stem cells for reconstitution of bone marrow, this article
reviews the biology of stem cells found in the cord blood in the context of cell plasticity
and their therapeutic potential for repair of the nervous system.
KEYWORDS
Stem cells - umbilical cord blood - plasticity - central nervous system
REFERENCES
- 1
Ende N.
Berashis cells in human umbilical cord blood vs. embryonic stem cells.
J Med.
2002;
33
167-171
- 2
Scheffler B, Horn M, Blumcke I et al..
Marrow-mindedness: a perspective on neuropoiesis.
Trends Neurosci.
1999;
22
348-356
- 3
Gordon M Y, Blackett N M.
Reconstruction of the hematopoietic system after stem cell transplantation.
Cell Transplant.
1998;
7
339-344
- 4
McKay R.
Stem cells in the nervous system.
Science.
1997;
276
66-71
- 5
Doetschman T C, Eistetter H, Katz M, Schmidt W, Kemler R.
The in vitro development of blastocyst-derived embryonic stem cell lines; formation
of visceral yolk sac, blood islands and myocardium.
J Embryol Exp Morphol.
1985;
87
27-45
- 6
Nelson J L.
Microchimerism: incidental byproduct of pregnancy or active participant in human health?.
Trends Mol Med.
2002;
8
109-113
- 7
Zon L I.
Developmental biology of hematopoiesis.
Blood.
1995;
86
2876-2891
- 8
Matsui Y, Zsebo K M, Hogan B L.
Embryonic expression of a haematopoietic growth factor encoded by the Sl locus and
the ligand for c-kit.
Nature.
1990;
347
667-669
- 9
Kunisada T, Yoshida H, Yamazaki H et al..
Transgene expression of steel factor in the basal layer of epidermis promotes survival,
proliferation, differentiation and migration of melanocyte precursors.
Development.
1998;
125
2915-2923
- 10
Campagnoli C, Roberts I A, Kumar S, Bennett P R, Bellantuono I, Fisk N M.
Identification of mesenchymal stem/progenitor cells in human first-trimester fetal
blood, liver, and bone marrow.
Blood.
2001;
98
2396-2402
- 11
Fritsch G, Stimpfl M, Kurz M et al..
The composition of CD34 subpopulations differs between bone marrow, blood and cord
blood.
Bone Marrow Transplant.
1996;
17
169-178
- 12
Lu L, Shen R N, Broxmeyer H E.
Stem cells from bone marrow, umbilical cord blood and peripheral blood for clinical
application: current status and future application.
Crit Rev Oncol Hematol.
1996;
22
61-78
- 13
Rocha V, Cornish J, Sievers E L et al..
Comparison of outcomes of unrelated bone marrow and umbilical cord blood transplants
in children with acute leukemia.
Blood.
2001;
97
2962-2971
- 14
Wagner J E.
Umbilical cord blood transplantation.
Transfusion.
1995;
35
619-621
- 15
Risdon G, Gaddy J, Broxmeyer H E.
Allogeneic responses of human umbilical cord blood.
Blood Cells.
1994;
20
566-572
- 16
Roncarolo M G, Bigler M, Ciuti E, Martino S, Tovo P A.
Immune responses by cord blood cells.
Blood Cells.
1994;
20
573-586
- 17
Wilson C B, Westall J, Johnston L, Lewis D B, Dower S K, Alpert A R.
Decreased production of interferon-gamma by human neonatal cells. Intrinsic and regulatory
deficiencies.
J Clin Invest.
1986;
77
860-867
- 18
Hao Q L, Shah A J, Thiemann F T, Smogorzewska E M, Crooks G M.
A functional comparison of CD34 + CD38- cells in cord blood and bone marrow.
Blood.
1995;
86
3745-3753
- 19
Gluckman E, Rocha V, Chastang C.
Peripheral stem cells in bone marrow transplantation. Cord blood stem cell transplantation.
Baillieres Best Pract Res Clin Haematol.
1999;
12
279-292
- 20
Bjornson C RR, Rietze R L, Reynolds B A, Magli M C, Vescovi A L.
Turning brain into blood: a hematopoietic fate adopted by adult neural stem cells
in vivo.
Science.
1999;
283
534-537
- 21
Wakitani S, Saito T, Caplan A I.
Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine.
Muscle Nerve.
1995;
18
1417-1426
- 22
Ferrari G, Cusella-DeAngelis G, Coletta M et al..
Muscle regeneration by bone marrow-derived myogenic precursors.
Science.
1998;
279
1528-1530
- 23
Orlic D, Kajstura J, Chimenti S et al..
Bone marrow cells regenerate infarcted myocardium.
Nature.
2001;
410
701-705
- 24
Orlic D, Kajstura J, Chimenti S et al..
Mobilized bone marrow cells repair the infarcted heart, improving function and survival.
Proc Natl Acad Sci USA.
2001;
98
10344-10349
- 25
Makino S, Fukuda K, Miyoshi S et al..
Cardiomyocytes can be generated from marrow stromal cells in vitro.
J Clin Invest.
1999;
103
697-705
- 26
Petersen B E, Bowen W C, Patrene K D et al..
Bone marrow as a source of hepatic oval cells.
Science.
1999;
284
1168-1170
- 27
Song S, Sanchez-Ramos J.
Brain as the sea of marrow.
Exp Neurol.
2003;
184
54-60
- 28
Eglitis M A, Mezey E.
Hematopoietic cells differentiate into both microglia and macroglia in the brains
of adult mice.
Proc Natl Acad Sci USA.
1997;
94
4080-4085
- 29
Azizi S A, Stokes D, Augelli B J, DiGirolamo C, Prockop D J.
Engraftment and migration of human bone marrow stromal cells implanted in the brains
of albino rats-similarities to astrocyte grafts.
Proc Natl Acad Sci USA.
1998;
95
3908-3913
- 30
Jackson K A, Majka S M, Wang H et al..
Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells.
J Clin Invest.
2001;
107
1395-1402
- 31
Kohyama J, Abe H, Shimazaki T et al..
Brain from bone: efficient “meta-differentiation” of marrow stroma-derived mature
osteoblasts to neurons with Noggin or a demethylating agent.
Differentiation.
2001;
68
235-244
- 32
Sanchez-Ramos J, Song S, Cardozo-Pelaez F et al..
Adult bone marrow stromal cells differentiate into neural cells in vitro.
Exp Neurol.
2000;
164
247-256
- 33
Brazelton T R, Rossi F MV, Keshet G I, Blau H M.
From marrow to brain: expression of neuronal phenotypes in adult mice.
Science.
2000;
290
1775-1779
- 34
Mezey E, Chandross K J, Harta G, Maki R A, McKercher S R.
Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone
marrow.
Science.
2000;
290
1779-1782
- 35
Weimann J M, Charlton C A, Brazelton T R, Hackman R C, Blau H M.
Contribution of transplanted bone marrow cells to Purkinje neurons in human adult
brains.
Proc Natl Acad Sci USA.
2003;
100
2088-2093
- 36
Cogle C R, Yachnis A T, Laywell E D et al..
Bone marrow transdifferentiation in brain after transplantation: a retrospective study.
Lancet.
2004;
363
1432-1437
- 37
Deb A, Wang S, Skelding K A, Miller D, Simper D, Caplice N M.
Bone marrow-derived cardiomyocytes are present in adult human heart: a study of gender-mismatched
bone marrow transplantation patients.
Circulation.
2003;
107
1247-1249
- 38
Caplice N M, Bunch T J, Stalboerger P G et al..
Smooth muscle cells in human coronary atherosclerosis can originate from cells administered
at marrow transplantation.
Proc Natl Acad Sci USA.
2003;
100
4754-4759
- 39
Chen N, Hudson J E, Walczak P et al..
Human umbilical cord blood progenitors: the potential of these hematopoietic cells
to become neural.
Stem Cells.
2005;
23
1560-1570
- 40
Jang Y K, Park J J, Lee M C et al..
Retinoic acid-mediated induction of neurons and glial cells from human umbilical cord-derived
hematopoietic stem cells.
J Neurosci Res.
2004;
75
573-584
- 41
McGuckin C P, Forraz N, Allouard Q, Pettengell R.
Umbilical cord blood stem cells can expand hematopoietic and neuroglial progenitors
in vitro.
Exp Cell Res.
2004;
295
350-359
- 42
Sun W, Buzanska L, Domanska-Janik K, Salvi R J, Stachowiak M K.
Voltage-sensitive and ligand-gated channels in differentiating neural stem-like cells
derived from the nonhematopoietic fraction of human umbilical cord blood.
Stem Cells.
2005;
23
931-945
- 43
Wislet-Gendebien S, Hans G, Leprince P, Rigo J-M, Moonen G, Rogister B.
Plasticity of cultured mesenchymal stem cells: switch from nestin-positive to excitable
neuron-like phenotype.
Stem Cells.
2005;
23
392-402
- 44
Zigova T, Song S, Willing A E et al..
Human umbilical cord blood cells express neural antigens after transplantation into
the developing rat brain.
Cell Transplant.
2002;
11
265-274
- 45
Walczak P, Chen N, Hudson J E et al..
Do hematopoietic cells exposed to a neurogenic environment mimic properties of endogenous
neural precursors?.
J Neurosci Res.
2004;
76
244-254
- 46
Kogler G, Sensken S, Airey J A et al..
A new human somatic stem cell from placental cord blood with intrinsic pluripotent
differentiation potential.
J Exp Med.
2004;
200
123-135
- 47
Chen J, Sanberg P R, Li Y et al..
Intravenous administration of human umbilical cord blood reduces behavioral deficits
after stroke in rats.
Stroke.
2001;
32
2682-2688
- 48
Willing A E, Lixian J, Milliken M et al..
Intravenous versus intrastriatal cord blood administration in a rodent model of stroke.
J Neurosci Res.
2003;
73
296-307
- 49
Borlongan C V, Hadman M, Sanberg C D, Sanberg P R.
Central nervous system entry of peripherally injected umbilical cord blood cells is
not required for neuroprotection in stroke.
Stroke.
2004;
35
2385-2389
- 50
Taguchi A, Soma T, Tanaka H et al..
Administration of CD34 + cells after stroke enhances neurogenesis via angiogenesis
in a mouse model.
J Clin Invest.
2004;
114
330-338
- 51
Ende N, Weinstein F, Chen R, Ende M.
Human umbilical cord blood effect on sod mice (amyotrophic lateral sclerosis).
Life Sci.
2000;
67
53-59
- 52
Chen R, Ende N.
The potential for the use of mononuclear cells from human umbilical cord blood in
the treatment of amyotrophic lateral sclerosis in SOD1 mice.
J Med.
2000;
31
21-30
- 53
Ende N, Chen R, Ende-Harris D.
Human umbilical cord blood cells ameliorate Alzheimer's disease in transgenic mice.
J Med.
2001;
32
241-247
- 54
Ende N, Chen R.
Human umbilical cord blood cells ameliorate Huntington's disease in transgenic mice.
J Med.
2001;
32
231-240
- 55
Ende N, Chen R.
Parkinson's disease mice and human umbilical cord blood.
J Med.
2002;
33
173-180
- 56
Garbuzova-Davis S, Willing A E, Zigova T et al..
Intravenous administration of human umbilical cord blood cells in a mouse model of
amyotrophic lateral sclerosis: distribution, migration, and differentiation.
J Hematother Stem Cell Res.
2003;
12
255-270
- 57
Navarro C, Dominguez C, Costa M, Ortega J J.
Bone marrow transplant in a case of mucopolysaccharidosis I Scheie phenotype: skin
ultrastructure before and after transplantation.
Acta Neuropathol (Berl).
1991;
82
33-38
- 58
Schaison G, Bordigoni P, Leverger G.
Bone marrow transplantation for genetic and metabolic disorders.
Nouv Rev Fr Hematol.
1989;
31
119-123
- 59
Walkley S U, Thrall M A, Dobrenis K et al..
Bone marrow transplantation corrects the enzyme defect in neurons of the central nervous
system in a lysosomal storage disease.
Proc Natl Acad Sci USA.
1994;
91
2970-2974
- 60
Escolar M L, Poe M D, Provenzale J M et al..
Transplantation of umbilical-cord blood in babies with infantile Krabbe's disease.
N Engl J Med.
2005;
352
2069-2081
- 61
Staba S L, Escolar M L, Poe M et al..
Cord-blood transplants from unrelated donors in patients with Hurler's syndrome.
N Engl J Med.
2004;
350
1960-1969
- 62
Sanchez-Ramos J R, Song S, Kamath S G et al..
Expression of neural markers in human umbilical cord blood.
Exp Neurol.
2001;
171
109-115
- 63
Woodbury D, Reynolds K, Black I B.
Adult bone marrow stromal stem cells express germline, ectodermal, endodermal, and
mesodermal genes prior to neurogenesis.
J Neurosci Res.
2002;
69
908-917
- 64
Bossolasco P, Cova L, Calzarossa C et al..
Neuro-glial differentiation of human bone marrow stem cells in vitro.
Exp Neurol.
2005;
193
312-325
- 65
Liu Y, Rao M S.
Transdifferentiation-fact or artifact.
J Cell Biochem.
2003;
88
29-40
- 66
Lendahl U, Zimmerman L B, McKay R D.
CNS stem cells express a new class of intermediate filament protein.
Cell.
1990;
60
585-595
- 67
Sjoberg G, Jiang W Q, Ringertz N R, Lendahl U, Sejersen T.
Colocalization of nestin and vimentin/desmin in skeletal muscle cells demonstrated
by three-dimensional fluorescence digital imaging microscopy.
Exp Cell Res.
1994;
214
447-458
- 68
Reeve J G, Stewart J, Watson J V, Wulfrank D, Twentyman P R, Bleehen N M.
Neuron specific enolase expression in carcinoma of the lung.
Br J Cancer.
1986;
53
519-528
- 69
Terskikh A V, Easterday M C, Li L et al..
From hematopoiesis to neuropoiesis: evidence of overlapping genetic programs.
Proc Natl Acad Sci USA.
2001;
98
7934-7939
- 70
Ha Y, Choi J U, Yoon D H et al..
Neural phenotype expression of cultured human cord blood cells in vitro.
Neuroreport.
2001;
12
3523-3527
- 71
Buzanska L, Machaj E K, Zablocka B, Pojda Z, Domanska-Janik K.
Human cord blood-derived cells attain neuronal and glial features in vitro.
J Cell Sci.
2002;
115
2131-2138
- 72
Bicknese A R, Goodwin H S, Quinn C O, Henderson V C, Chien S N, Wall D A.
Human umbilical cord blood cells can be induced to express markers for neurons and
glia.
Cell Transplant.
2002;
11
261-264
- 73
Goodwin H S, Bicknese A R, Chien S N, Bogucki B D, Quinn C O, Wall D A.
Multilineage differentiation activity by cells isolated from umbilical cord blood:
expression of bone, fat, and neural markers.
Biol Blood Marrow Transplant.
2001;
7
581-588
- 74
Hou L, Cao H, Wang D et al..
Induction of umbilical cord blood mesenchymal stem cells into neuron-like cells in
vitro.
Int J Hematol.
2003;
78
256-261
- 75
Saporta S, Kim J J, Willing A E, Fu E S, Davis C D, Sanberg P R.
Human umbilical cord blood stem cells infusion in spinal cord injury: engraftment
and beneficial influence on behavior.
J Hematother Stem Cell Res.
2003;
12
271-278
- 76
Vendrame M, Cassady J, Newcomb J et al..
Infusion of human umbilical cord blood cells in a rat model of stroke dose-dependently
rescues behavioral deficits and reduces infarct volume.
Stroke.
2004;
35
2390-2395
- 77
Coenen M, Kogler G, Wernet P, Brustle O.
Transplantation of human umbilical cord blood-derived adherent progenitors into the
developing rodent brain.
J Neuropathol Exp Neurol.
2005;
64
681-688
- 78
Garbuzova-Davis S, Willing A E, Desjarlais T, Davis Sanberg C, Sanberg P R.
Transplantation of human umbilical cord blood cells benefits an animal model of Sanfilippo
syndrome type B.
Stem Cells Dev.
2005;
14
384-394
- 79
Kuh S U, Cho Y E, Yoon D H, Kim K N, Ha Y.
Functional recovery after human umbilical cord blood cells transplantation with brain-derived
neutrophic factor into the spinal cord injured rat.
Acta Neurochir (Wien).
2005;
147
985-992
- 80
Nan Z, Grande A, Sanberg C D, Sanberg P R, Low W C.
Infusion of human umbilical cord blood ameliorates neurologic deficits in rats with
hemorrhagic brain injury.
Ann NY Acad Sci.
2005;
1049
84-96
- 81
Pan Y, Nastav J B, Zhang H, Bretton R H, Panneton W M, Bicknese A R.
Engraftment of freshly isolated or cultured human umbilical cord blood cells and the
effect of cyclosporin A on the outcome.
Exp Neurol.
2005;
192
365-372
Juan Sanchez-RamosM.D.
Department of Neurology (MDC 55), University of South Florida
12901 Bruce B. Downs Blvd., Tampa, FL 33612
eMail: jsramos@hsc.usf.edu