Semin Reprod Med 2006; 24(5): 358-369
DOI: 10.1055/s-2006-952150
Copyright © 2006 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

Stem Cells from Umbilical Cord Blood

Juan Sanchez-Ramos1
  • 1Department of Neurology, University of South Florida, Tampa, Florida
Further Information

Publication History

Publication Date:
22 November 2006 (online)


The study of hematopoiesis, the generation of blood cell lines throughout life, has provided conceptual, experimental, and therapeutic approaches useful to all stem cell biologists. From a clinical perspective, no other area of stem cell biology has been applied as successfully as has transplantation of bone marrow and cord blood for the treatment of blood diseases. In the last few years, research in stem cell biology has expanded rapidly to include the study of stem cells from embryonic, fetal, and various adult tissues, engendering novel perspectives regarding the identity, origin, and full therapeutic potential of tissue-specific stem cells. Rather than focusing on the use of cord blood stem cells for reconstitution of bone marrow, this article reviews the biology of stem cells found in the cord blood in the context of cell plasticity and their therapeutic potential for repair of the nervous system.


  • 1 Ende N. Berashis cells in human umbilical cord blood vs. embryonic stem cells.  J Med. 2002;  33 167-171
  • 2 Scheffler B, Horn M, Blumcke I et al.. Marrow-mindedness: a perspective on neuropoiesis.  Trends Neurosci. 1999;  22 348-356
  • 3 Gordon M Y, Blackett N M. Reconstruction of the hematopoietic system after stem cell transplantation.  Cell Transplant. 1998;  7 339-344
  • 4 McKay R. Stem cells in the nervous system.  Science. 1997;  276 66-71
  • 5 Doetschman T C, Eistetter H, Katz M, Schmidt W, Kemler R. The in vitro development of blastocyst-derived embryonic stem cell lines; formation of visceral yolk sac, blood islands and myocardium.  J Embryol Exp Morphol. 1985;  87 27-45
  • 6 Nelson J L. Microchimerism: incidental byproduct of pregnancy or active participant in human health?.  Trends Mol Med. 2002;  8 109-113
  • 7 Zon L I. Developmental biology of hematopoiesis.  Blood. 1995;  86 2876-2891
  • 8 Matsui Y, Zsebo K M, Hogan B L. Embryonic expression of a haematopoietic growth factor encoded by the Sl locus and the ligand for c-kit.  Nature. 1990;  347 667-669
  • 9 Kunisada T, Yoshida H, Yamazaki H et al.. Transgene expression of steel factor in the basal layer of epidermis promotes survival, proliferation, differentiation and migration of melanocyte precursors.  Development. 1998;  125 2915-2923
  • 10 Campagnoli C, Roberts I A, Kumar S, Bennett P R, Bellantuono I, Fisk N M. Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow.  Blood. 2001;  98 2396-2402
  • 11 Fritsch G, Stimpfl M, Kurz M et al.. The composition of CD34 subpopulations differs between bone marrow, blood and cord blood.  Bone Marrow Transplant. 1996;  17 169-178
  • 12 Lu L, Shen R N, Broxmeyer H E. Stem cells from bone marrow, umbilical cord blood and peripheral blood for clinical application: current status and future application.  Crit Rev Oncol Hematol. 1996;  22 61-78
  • 13 Rocha V, Cornish J, Sievers E L et al.. Comparison of outcomes of unrelated bone marrow and umbilical cord blood transplants in children with acute leukemia.  Blood. 2001;  97 2962-2971
  • 14 Wagner J E. Umbilical cord blood transplantation.  Transfusion. 1995;  35 619-621
  • 15 Risdon G, Gaddy J, Broxmeyer H E. Allogeneic responses of human umbilical cord blood.  Blood Cells. 1994;  20 566-572
  • 16 Roncarolo M G, Bigler M, Ciuti E, Martino S, Tovo P A. Immune responses by cord blood cells.  Blood Cells. 1994;  20 573-586
  • 17 Wilson C B, Westall J, Johnston L, Lewis D B, Dower S K, Alpert A R. Decreased production of interferon-gamma by human neonatal cells. Intrinsic and regulatory deficiencies.  J Clin Invest. 1986;  77 860-867
  • 18 Hao Q L, Shah A J, Thiemann F T, Smogorzewska E M, Crooks G M. A functional comparison of CD34 + CD38- cells in cord blood and bone marrow.  Blood. 1995;  86 3745-3753
  • 19 Gluckman E, Rocha V, Chastang C. Peripheral stem cells in bone marrow transplantation. Cord blood stem cell transplantation.  Baillieres Best Pract Res Clin Haematol. 1999;  12 279-292
  • 20 Bjornson C RR, Rietze R L, Reynolds B A, Magli M C, Vescovi A L. Turning brain into blood: a hematopoietic fate adopted by adult neural stem cells in vivo.  Science. 1999;  283 534-537
  • 21 Wakitani S, Saito T, Caplan A I. Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine.  Muscle Nerve. 1995;  18 1417-1426
  • 22 Ferrari G, Cusella-DeAngelis G, Coletta M et al.. Muscle regeneration by bone marrow-derived myogenic precursors.  Science. 1998;  279 1528-1530
  • 23 Orlic D, Kajstura J, Chimenti S et al.. Bone marrow cells regenerate infarcted myocardium.  Nature. 2001;  410 701-705
  • 24 Orlic D, Kajstura J, Chimenti S et al.. Mobilized bone marrow cells repair the infarcted heart, improving function and survival.  Proc Natl Acad Sci USA. 2001;  98 10344-10349
  • 25 Makino S, Fukuda K, Miyoshi S et al.. Cardiomyocytes can be generated from marrow stromal cells in vitro.  J Clin Invest. 1999;  103 697-705
  • 26 Petersen B E, Bowen W C, Patrene K D et al.. Bone marrow as a source of hepatic oval cells.  Science. 1999;  284 1168-1170
  • 27 Song S, Sanchez-Ramos J. Brain as the sea of marrow.  Exp Neurol. 2003;  184 54-60
  • 28 Eglitis M A, Mezey E. Hematopoietic cells differentiate into both microglia and macroglia in the brains of adult mice.  Proc Natl Acad Sci USA. 1997;  94 4080-4085
  • 29 Azizi S A, Stokes D, Augelli B J, DiGirolamo C, Prockop D J. Engraftment and migration of human bone marrow stromal cells implanted in the brains of albino rats-similarities to astrocyte grafts.  Proc Natl Acad Sci USA. 1998;  95 3908-3913
  • 30 Jackson K A, Majka S M, Wang H et al.. Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells.  J Clin Invest. 2001;  107 1395-1402
  • 31 Kohyama J, Abe H, Shimazaki T et al.. Brain from bone: efficient “meta-differentiation” of marrow stroma-derived mature osteoblasts to neurons with Noggin or a demethylating agent.  Differentiation. 2001;  68 235-244
  • 32 Sanchez-Ramos J, Song S, Cardozo-Pelaez F et al.. Adult bone marrow stromal cells differentiate into neural cells in vitro.  Exp Neurol. 2000;  164 247-256
  • 33 Brazelton T R, Rossi F MV, Keshet G I, Blau H M. From marrow to brain: expression of neuronal phenotypes in adult mice.  Science. 2000;  290 1775-1779
  • 34 Mezey E, Chandross K J, Harta G, Maki R A, McKercher S R. Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow.  Science. 2000;  290 1779-1782
  • 35 Weimann J M, Charlton C A, Brazelton T R, Hackman R C, Blau H M. Contribution of transplanted bone marrow cells to Purkinje neurons in human adult brains.  Proc Natl Acad Sci USA. 2003;  100 2088-2093
  • 36 Cogle C R, Yachnis A T, Laywell E D et al.. Bone marrow transdifferentiation in brain after transplantation: a retrospective study.  Lancet. 2004;  363 1432-1437
  • 37 Deb A, Wang S, Skelding K A, Miller D, Simper D, Caplice N M. Bone marrow-derived cardiomyocytes are present in adult human heart: a study of gender-mismatched bone marrow transplantation patients.  Circulation. 2003;  107 1247-1249
  • 38 Caplice N M, Bunch T J, Stalboerger P G et al.. Smooth muscle cells in human coronary atherosclerosis can originate from cells administered at marrow transplantation.  Proc Natl Acad Sci USA. 2003;  100 4754-4759
  • 39 Chen N, Hudson J E, Walczak P et al.. Human umbilical cord blood progenitors: the potential of these hematopoietic cells to become neural.  Stem Cells. 2005;  23 1560-1570
  • 40 Jang Y K, Park J J, Lee M C et al.. Retinoic acid-mediated induction of neurons and glial cells from human umbilical cord-derived hematopoietic stem cells.  J Neurosci Res. 2004;  75 573-584
  • 41 McGuckin C P, Forraz N, Allouard Q, Pettengell R. Umbilical cord blood stem cells can expand hematopoietic and neuroglial progenitors in vitro.  Exp Cell Res. 2004;  295 350-359
  • 42 Sun W, Buzanska L, Domanska-Janik K, Salvi R J, Stachowiak M K. Voltage-sensitive and ligand-gated channels in differentiating neural stem-like cells derived from the nonhematopoietic fraction of human umbilical cord blood.  Stem Cells. 2005;  23 931-945
  • 43 Wislet-Gendebien S, Hans G, Leprince P, Rigo J-M, Moonen G, Rogister B. Plasticity of cultured mesenchymal stem cells: switch from nestin-positive to excitable neuron-like phenotype.  Stem Cells. 2005;  23 392-402
  • 44 Zigova T, Song S, Willing A E et al.. Human umbilical cord blood cells express neural antigens after transplantation into the developing rat brain.  Cell Transplant. 2002;  11 265-274
  • 45 Walczak P, Chen N, Hudson J E et al.. Do hematopoietic cells exposed to a neurogenic environment mimic properties of endogenous neural precursors?.  J Neurosci Res. 2004;  76 244-254
  • 46 Kogler G, Sensken S, Airey J A et al.. A new human somatic stem cell from placental cord blood with intrinsic pluripotent differentiation potential.  J Exp Med. 2004;  200 123-135
  • 47 Chen J, Sanberg P R, Li Y et al.. Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats.  Stroke. 2001;  32 2682-2688
  • 48 Willing A E, Lixian J, Milliken M et al.. Intravenous versus intrastriatal cord blood administration in a rodent model of stroke.  J Neurosci Res. 2003;  73 296-307
  • 49 Borlongan C V, Hadman M, Sanberg C D, Sanberg P R. Central nervous system entry of peripherally injected umbilical cord blood cells is not required for neuroprotection in stroke.  Stroke. 2004;  35 2385-2389
  • 50 Taguchi A, Soma T, Tanaka H et al.. Administration of CD34 + cells after stroke enhances neurogenesis via angiogenesis in a mouse model.  J Clin Invest. 2004;  114 330-338
  • 51 Ende N, Weinstein F, Chen R, Ende M. Human umbilical cord blood effect on sod mice (amyotrophic lateral sclerosis).  Life Sci. 2000;  67 53-59
  • 52 Chen R, Ende N. The potential for the use of mononuclear cells from human umbilical cord blood in the treatment of amyotrophic lateral sclerosis in SOD1 mice.  J Med. 2000;  31 21-30
  • 53 Ende N, Chen R, Ende-Harris D. Human umbilical cord blood cells ameliorate Alzheimer's disease in transgenic mice.  J Med. 2001;  32 241-247
  • 54 Ende N, Chen R. Human umbilical cord blood cells ameliorate Huntington's disease in transgenic mice.  J Med. 2001;  32 231-240
  • 55 Ende N, Chen R. Parkinson's disease mice and human umbilical cord blood.  J Med. 2002;  33 173-180
  • 56 Garbuzova-Davis S, Willing A E, Zigova T et al.. Intravenous administration of human umbilical cord blood cells in a mouse model of amyotrophic lateral sclerosis: distribution, migration, and differentiation.  J Hematother Stem Cell Res. 2003;  12 255-270
  • 57 Navarro C, Dominguez C, Costa M, Ortega J J. Bone marrow transplant in a case of mucopolysaccharidosis I Scheie phenotype: skin ultrastructure before and after transplantation.  Acta Neuropathol (Berl). 1991;  82 33-38
  • 58 Schaison G, Bordigoni P, Leverger G. Bone marrow transplantation for genetic and metabolic disorders.  Nouv Rev Fr Hematol. 1989;  31 119-123
  • 59 Walkley S U, Thrall M A, Dobrenis K et al.. Bone marrow transplantation corrects the enzyme defect in neurons of the central nervous system in a lysosomal storage disease.  Proc Natl Acad Sci USA. 1994;  91 2970-2974
  • 60 Escolar M L, Poe M D, Provenzale J M et al.. Transplantation of umbilical-cord blood in babies with infantile Krabbe's disease.  N Engl J Med. 2005;  352 2069-2081
  • 61 Staba S L, Escolar M L, Poe M et al.. Cord-blood transplants from unrelated donors in patients with Hurler's syndrome.  N Engl J Med. 2004;  350 1960-1969
  • 62 Sanchez-Ramos J R, Song S, Kamath S G et al.. Expression of neural markers in human umbilical cord blood.  Exp Neurol. 2001;  171 109-115
  • 63 Woodbury D, Reynolds K, Black I B. Adult bone marrow stromal stem cells express germline, ectodermal, endodermal, and mesodermal genes prior to neurogenesis.  J Neurosci Res. 2002;  69 908-917
  • 64 Bossolasco P, Cova L, Calzarossa C et al.. Neuro-glial differentiation of human bone marrow stem cells in vitro.  Exp Neurol. 2005;  193 312-325
  • 65 Liu Y, Rao M S. Transdifferentiation-fact or artifact.  J Cell Biochem. 2003;  88 29-40
  • 66 Lendahl U, Zimmerman L B, McKay R D. CNS stem cells express a new class of intermediate filament protein.  Cell. 1990;  60 585-595
  • 67 Sjoberg G, Jiang W Q, Ringertz N R, Lendahl U, Sejersen T. Colocalization of nestin and vimentin/desmin in skeletal muscle cells demonstrated by three-dimensional fluorescence digital imaging microscopy.  Exp Cell Res. 1994;  214 447-458
  • 68 Reeve J G, Stewart J, Watson J V, Wulfrank D, Twentyman P R, Bleehen N M. Neuron specific enolase expression in carcinoma of the lung.  Br J Cancer. 1986;  53 519-528
  • 69 Terskikh A V, Easterday M C, Li L et al.. From hematopoiesis to neuropoiesis: evidence of overlapping genetic programs.  Proc Natl Acad Sci USA. 2001;  98 7934-7939
  • 70 Ha Y, Choi J U, Yoon D H et al.. Neural phenotype expression of cultured human cord blood cells in vitro.  Neuroreport. 2001;  12 3523-3527
  • 71 Buzanska L, Machaj E K, Zablocka B, Pojda Z, Domanska-Janik K. Human cord blood-derived cells attain neuronal and glial features in vitro.  J Cell Sci. 2002;  115 2131-2138
  • 72 Bicknese A R, Goodwin H S, Quinn C O, Henderson V C, Chien S N, Wall D A. Human umbilical cord blood cells can be induced to express markers for neurons and glia.  Cell Transplant. 2002;  11 261-264
  • 73 Goodwin H S, Bicknese A R, Chien S N, Bogucki B D, Quinn C O, Wall D A. Multilineage differentiation activity by cells isolated from umbilical cord blood: expression of bone, fat, and neural markers.  Biol Blood Marrow Transplant. 2001;  7 581-588
  • 74 Hou L, Cao H, Wang D et al.. Induction of umbilical cord blood mesenchymal stem cells into neuron-like cells in vitro.  Int J Hematol. 2003;  78 256-261
  • 75 Saporta S, Kim J J, Willing A E, Fu E S, Davis C D, Sanberg P R. Human umbilical cord blood stem cells infusion in spinal cord injury: engraftment and beneficial influence on behavior.  J Hematother Stem Cell Res. 2003;  12 271-278
  • 76 Vendrame M, Cassady J, Newcomb J et al.. Infusion of human umbilical cord blood cells in a rat model of stroke dose-dependently rescues behavioral deficits and reduces infarct volume.  Stroke. 2004;  35 2390-2395
  • 77 Coenen M, Kogler G, Wernet P, Brustle O. Transplantation of human umbilical cord blood-derived adherent progenitors into the developing rodent brain.  J Neuropathol Exp Neurol. 2005;  64 681-688
  • 78 Garbuzova-Davis S, Willing A E, Desjarlais T, Davis Sanberg C, Sanberg P R. Transplantation of human umbilical cord blood cells benefits an animal model of Sanfilippo syndrome type B.  Stem Cells Dev. 2005;  14 384-394
  • 79 Kuh S U, Cho Y E, Yoon D H, Kim K N, Ha Y. Functional recovery after human umbilical cord blood cells transplantation with brain-derived neutrophic factor into the spinal cord injured rat.  Acta Neurochir (Wien). 2005;  147 985-992
  • 80 Nan Z, Grande A, Sanberg C D, Sanberg P R, Low W C. Infusion of human umbilical cord blood ameliorates neurologic deficits in rats with hemorrhagic brain injury.  Ann NY Acad Sci. 2005;  1049 84-96
  • 81 Pan Y, Nastav J B, Zhang H, Bretton R H, Panneton W M, Bicknese A R. Engraftment of freshly isolated or cultured human umbilical cord blood cells and the effect of cyclosporin A on the outcome.  Exp Neurol. 2005;  192 365-372

Juan Sanchez-RamosM.D. 

Department of Neurology (MDC 55), University of South Florida

12901 Bruce B. Downs Blvd., Tampa, FL 33612