Planta Med 2007; 73(1): 20-26
DOI: 10.1055/s-2006-951744
Original Paper
Pharmacology
© Georg Thieme Verlag KG Stuttgart · New York

Protein Tyrosine Nitration Induced by Heme/Hydrogen Peroxide: Inhibitory Effect of Hydroxycinnamoyl Conjugates

Ana Olmos1 , Salvador Máñez1 , Rosa M. Giner1 , M. Carmen Recio1 , José L. Ríos1
  • 1Departament de Farmacologia, Universitat de València, Valencia, Spain
Weitere Informationen

Publikationsverlauf

Received: February 1, 2006

Accepted: October 8, 2006

Publikationsdatum:
15. November 2006 (online)

Abstract

The present study was designed to optimize the experimental conditions that govern the heme-catalyzed nitration of protein tyrosine residues by nitrite, and, within this framework, to study the effects of 3,5-dicaffeoylquinic acid and its methyl ester, both of which have been previously reported to be antioxidants and inhibitors of leukocyte functions. Although the presence of hydrogen peroxide is essential in cell-free systems, an excess of this compound was found to be detrimental, so much so that an increase in hemin concentration actually resulted in an inverse effect on the reaction, depending on the levels of fixed hydrogen peroxide. Unlike previous reports on nitrite-induced albumin tyrosine nitration, the optimal pH here was found to be 7.0. The two caffeoyl conjugates tested were found to be effective inhibitors of protein nitration, with IC50 values ranging from 20 - 30 μM, regardless of the presence of bicarbonate. For the inhibition of myeloperoxidase-catalyzed protein nitration by human polymorphonuclear leukocytes stimulated by phorbol ester, the potencies obtained were up to two times higher. This is the first time that caffeoylquinic esters have been reported as inhibitors of heme-based protein nitration.

References

  • 1 Ischiropoulos H. Biological tyrosine nitration: a pathophysiological function of nitric oxide and reactive oxygen species.  Arch Biochem Biophys. 1998;  356 1-11
  • 2 Schopfer F J, Baker P R, Freeman B A. NO-dependent protein nitration: a cell signaling event or an oxidative inflammatory response?.  Trends Biochem Sci. 2003;  28 646-54
  • 3 Beckman J S, Koppenol W H. Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly.  Am J Physiol. 1996;  271 C1424-37
  • 4 Sampson J B, Ye Y, Rosen H, Beckman J S. Myeloperoxidase and horseradish peroxidase catalyze tyrosine nitration in proteins from nitrite and hydrogen peroxide.  Arch Biochem Biophys. 1998;  356 207-13
  • 5 Eiserich J P, Hristova M, Cross C E, Jones A D, Freeman B A, Halliwell B. et al . Formation of nitric oxide-derived inflammatory oxidants by myeloperoxidase in neutrophils.  Nature. 1998;  391 393-7.
  • 6 Thomas D D, Espey M G, Vitek M P, Miranda K M, Wink D A. Protein nitration is mediated by heme and free metals through Fenton-type chemistry: an alternative to the NO/O2 - reaction.  Proc Natl Acad Sci USA. 2002;  99 12 691-6
  • 7 Zheng L, Nukuna B, Brennan M L, Sun M, Goormastic M, Settle M. et al . Apolipoprotein A-I is a selective target for myeloperoxidase-catalyzed oxidation and functional impairment in subjects with cardiovascular disease.  J Clin Invest. 2004;  114 529-41.
  • 8 Shishehbor M H, Aviles R J, Brennan M L, Fu X, Goormastic M, Pearce G L. et al . Association of nitrotyrosine levels with cardiovascular disease and modulation by statin therapy.  J Am Med Assoc. 2003;  289 1675-80.
  • 9 Turko I L, Li L, Aulak K S, Stuehr D J, Chang J Y, Murad F. Protein tyrosine nitration in the mitochondria from diabetic mouse heart.  J Biol Chem. 2003;  278 33 972-7
  • 10 Bian K, Gao Z, Weisbrodt N, Murad F. The nature of heme/iron-induced protein tyrosine nitration.  Proc Natl Acad Sci USA. 2003;  100 5712-7
  • 11 Olmos A, Máñez S, Giner R M, Recio M C, Ríos J L. Isoprenylhydroquinone glucoside: a new non-antioxidant inhibitor of peroxynitrite-mediated tyrosine nitration.  Nitric Oxide. 2005;  12 54-60
  • 12 Góngora L, Giner R M, Máñez S, Recio M C, Schinella G, Ríos J L. Effects of caffeoyl conjugates of isoprenyl-hydroquinone glucoside and quinic acid on leukocyte function.  Life Sci. 2002;  71 2995-3004
  • 13 Góngora L, Giner R M, Máñez S, Recio M C, Ríos J L. Phagnalon rupestre as a source of compounds active on contact hypersensitivity.  Planta Med. 2002;  68 561-4
  • 14 Valderrama B, Ayala M, Vázquez-Duhalt R. Suicide inactivation of preoxidases and the challenge of engineering more robust enzymes.  Chem Biol. 2002;  9 555-65
  • 15 Egawa T, Shimada H, Ishimura Y. Formation of compound I in the reaction of native myoglobins with hydrogen peroxide.  J Biol Chem. 2000;  275 34 858-66
  • 16 Herold S, Rehmann F J. Kinetics of the reactions of nitrogen monoxide and nitrite with ferryl hemoglobin.  Free Radic Biol Med. 2003;  34 531-45
  • 17 Munro O Q, Scheidt W R. (Nitro)iron(III) porphyrins EPR detection of a transient low-spin iron(III) complex and structural characterization of an O atom transfer product.  Inorg Chem. 1998;  37 2308-16
  • 18 Gaut J P, Byun J, Tran H D, Lauber W M, Carroll J A, Hotchkiss R S. et al . Myeloperoxidase produces nitrating oxidants in vivo .  J Clin Invest. 2002;  109 1311-9
  • 19 Radi R, Denicola A, Freeman B A. Peroxynitrite reactions with carbon dioxide-bicarbonate.  Methods Enzymol. 1999;  301 353-67
  • 20 Kerry N, Rice-Evans C. Peroxynitrite oxidises catechols to o-quinones.  FEBS Lett. 1998;  437 167-71
  • 21 Zhao Y, Gao Z, Li H, Xu H. Hemin/nitrite/ H2O2 induces brain homogenate oxidation and nitration: effects of some flavonoids.  Biochim Biophys Acta. 2004;  1675 105-12
  • 22 Wippel R, Rehn M, Gorren A C, Schmidt K, Mayer B. Interference of the polyphenol epicatechin with the biological chemistry of nitric oxide- and peroxynitrite-mediated reactions.  Biochem Pharmacol. 2004;  67 1285-95
  • 23 Boersma B J, Patel R P, Kirk M, Jackson P L, Muccio D, Darley-Usmar V M. et al . Chlorination and nitration of soy isoflavones.  Arch Biochem Biophys. 1999;  368 265-75.
  • 24 Hampton M B, Kettle A J, Winterbourn C C. Inside the neutrophil phagosome: oxidants, myeloperoxidase, and bacterial killing.  Blood. 1998;  92 3007-17
  • 25 Li H, Förstermann U. Nitric oxide in the pathogenesis of vascular disease.  J Pathol. 2000;  190 244-54
  • 26 Wijayanti N, Katz N, Immenschuh S. Biology of heme in health and disease.  Curr Med Chem. 2004;  11 981-6
  • 27 Wittemer S M, Ploch M, Windeck T, Muller S C, Drewelow B, Derendorf H. et al . Bioavailability and phrmacokinetics of caffeoylquinic acids and flavonoids after oral administration of artichoke leaf extracts in humans.  Phytomedicine. 2005;  12 28-38
  • 28 Choi J, Park J K, Lee K T, Park K K, Kim W B, Lee J H. et al . In vivo antihepatotoxic effects of Ligularia fischeri var. spiciformis and the identification of the active component, 3,4-dicaffeoylquinic acid.  J Med Food. 2005;  8 348-52
  • 29 Kim H J, Kee Y S. Identification of new dicaffeoylquinic acids from Chrysanthemum morifolium and their antioxidant activities.  Planta Med. 2005;  71 871-6
  • 30 Nguyen H T, Awale S, Tezuka J Y, Ueda J Y, Tran Q, Kadeta S. Xanthine oxidase inhibitors from the flowers of Chrysanthemum sinense .  Planta Med. 2006;  72 46-51
  • 31 Moreira D P, Monteiro M C, Ribeiro-Alves M, Donangelo C M, Trugo L C. Contribution of chlorogenic acids to the iron-reducing activity of coffee beverages.  J Agric Food Chem. 2005;  53 1399-402

Salvador Máñez

Departament de Farmacologia

Facultat de Farmàcia

Universitat de València

Av. Vicent Andrés Estellés s/n.

46100 Burjassot (Valencia)

Spain

Telefon: +34-963-544-974

Fax: +34-963-544-943

eMail: manez@uv.es