Planta Med 2006; 72(15): 1418-1420
DOI: 10.1055/s-2006-951704
Letter
© Georg Thieme Verlag KG Stuttgart · New York

5α-Cardenolides from Kanahia laniflora Inhibit Ionotropic Acetylcholine Receptors

Cailean Clarkson1 , Ian R. Mellor2 , Maja Lambert1 , Jerzy W. Jaroszewski1
  • 1Department of Medicinal Chemistry, The Danish University of Pharmaceutical Sciences, Copenhagen, Denmark
  • 2School of Biology, University of Nottingham, Nottingham, United Kingdom
Further Information

Publication History

Received: May 9, 2006

Accepted: August 21, 2006

Publication Date:
20 October 2006 (online)

Abstract

5α-Cardenolides isolated from Kanahia laniflora are inhibitors of muscle-type nicotinic acetylcholine receptors expressed in TE671 cells with IC50 values in the range of 27 - 60 μM, as determined by whole-cell patch-clamp electrophysiological experiments.

References

  • 1 Beentje H. Kenya trees, shrubs and lianas. Nairobi; National Museums of Kenya 1994: p 494
  • 2 Haerdi F. Die Eingebornen-Heilpflanzen des Ulanga-Distriktes Tanganjikas (Ostafrika).  Acta Trop Supp. 1964;  8 135
  • 3 Neuwinger H D. African traditional medicine, a dictionary of plant use and applications. Stuttgart; Medpharm Scientific Publishers 2000: p 287
  • 4 Kruger A MC, Gerritsma-Van der Vijver L M. Die chemiese en biologiese evaluering van Kanahia laniflora (Asclepiadaceae).  S A Tydskr Nat Tegnol. 1986;  5 46-52
  • 5 Clarkson C, Stærk D, Hansen S H, Jaroszewski J W. Hyphenation of solid-phase extraction with liquid chromatography and nuclear magnetic resonance: application of HPLC-DAD-SPE-NMR to identification of constituents of Kanahia laniflora .  Anal Chem. 2005;  77 3547-53
  • 6 Cheung H TA, Chiu F CK, Watson T R, Wells R J. Cardenolide glycosides of the Asclepiadaceae. New glycosides from Asclepias fruticosa and the stereochemistry of uscharin, voruscharin and calotoxin. J Chem Soc Perkin Trans 1 1983: 2827-35
  • 7 Cheung H TA, Nelson C J. Cardenolide glycosides with 5,6-unsaturation from Asclepias vestita . J Chem Soc Perkin Trans 1 1989: 1563-70
  • 8 Somberg J C, Mudge G H, Risler T, Smith T W. Neurally mediated augmentation or arrhythmogenic properties of highly polar cardiac glycosides.  Am J Physiol. 1980;  238 202-8
  • 9 Siddiqui B S, Sultana R, Begum S, Zia A, Suria A. Cardenolides from the methanolic extract of Nerium oleander leaves possessing central nervous system depressant activity in mice.  J Nat Prod. 1997;  60 540-4
  • 10 Begum S, Siddiqui B S, Sultana R, Zia A, Suria A. Bio-active cardenolides from the leaves of Nerium oleander .  Phytochemistry. 1999;  50 435-8
  • 11 Krivoi I I, Drabkina T M, Dobretsov M G, Vasiliev A N, Kravtsova V V, Eaton M J. et al . Functional interaction between nicotinic cholinergic receptors and Na, K-ATPase in the skeletal muscles.  Ross Fiziol Zh Im I M Sechenova. 2004;  90 59-72
  • 12 Shoepfer R, Luther M, Lindstrom J. The human medulloblastoma cell line TE671 expresses a muscle like acetylcholine receptor - cloning of the α-subunit c-DNA.  FEBS Lett. 1988;  226 235-40
  • 13 Luther M A, Schoepfer R, Whiting P, Casey B, Blatt Y, Montal M S. et al . A muscle acetylcholine receptor is expressed in the human cerebellar medulloblastoma cell line TE761.  J Neurosci. 1989;  9 1082-96
  • 14 Hogg R C, Raggenbass M, Bertrand D. Nicotinic acetylcholine receptors: from structure to brain function.  Rev Physiol Biochem Pharmacol. 2003;  147 1-46
  • 15 Mellor I R, Usherwood P N. Targeting inotropic receptors with polyamine-containing toxins.  Toxicon. 2004;  43 493-508
  • 16 Brier T J, Mellor I R, Tikhonov D B, Neagoe I, Shao Z, Brierley M J. et al . Contrasting actions of philanthotoxin-343 and philanthotoxin-(12) on human muscle nicotinic acetylcholine receptors.  Mol Pharmacol. 2003;  64 954-64
  • 17 Pereira E FR, Hilmas C, Santos M D, Alkodon M, Maelicke A, Albuquerque E X. Unconventional ligands and modulators of nicotinic receptors.  J Neurobiol. 2002;  53 479-500
  • 18 Curtis L, Buisson B, Bertrand S, Bertrand D. Potentiation of human α4β2 neuronal nicotinic acetylcholine receptor by estradiol.  Mol Pharmacol. 2002;  61 127-35
  • 19 Shao Z, Mellor I R, Brierley M J, Harris J, Usherwood P NR. Potentiation and inhibition of nicotinic acetylcholine receptors by spermine in the TE671 human muscle cell line.  J Pharmacol Exp Ther. 1998;  286 1269-76
  • 20 Blanton M P, Xie Y, Dangott L J, Cohen J B. The steroid promegestone is a noncompetitive antagonist of the Torpedo nicotinic acetylcholine receptor that interacts with the lipid-protein interface.  Mol Pharmacol. 1999;  55 269-78
  • 21 Uki M, Nabekura J, Akaike N. Suppression of the nicotinic acetylcholine response in rat superior cervical ganglionic neurons by steroids.  J Neurochem. 1999;  72 808-14
  • 22 Paradiso K, Sabey K, Evers A S, Zorumski C F, Covey D G, Steinbach J H. Steroid inhibition of rat neuronal nicotinic α4β2 receptors expressed in HEK293 cells.  Mol Pharmacol. 2000;  58 341-51
  • 23 Kindler C H, Verotta D, Gray A T, Gropper M A, Yost C S. Additive inhibition of nicotinic acetylcholine receptors by corticosteroids and the neuromuscular blocking drug vecuronium.  Anesthesiology. 200;  92 821-32
  • 24 Shi L, He Y, Liu L, Wang C. Rapid nongenomic effect of corticosterone on neuronal nicotinic acetylcholine receptor in PC12 cells.  Arch Biochem Biophys. 2001;  394 145-50
  • 25 Takashima K, Kawasaki S, Kimura S, Fujita R, Sasaki K. Blockade of ionotropic receptor responses by progesterone in the ganglion cells of Aplysia .  Neurosci Res. 2002;  43 119-25
  • 26 De Almeida R F, Loura L M, Prieto M, Watts A, Fedorov A, Barrantes F J. Cholesterol modulates the organization of the γM4 transmembrane domain of the muscle nicotinic acetylcholine receptor.  Biophys J. 2004;  86 2261-72
  • 27 Hamouda A K, Chiara D C, Sauls D, Cohen J B, Blanton M P. Cholesterol interacts with transmembrane α-helices M1, M3, and M4 of the Torpedo nicotinic acetylcholine receptor: photolabeling studies using [3H]azicholesterol.  Biochemistry. 2006;  45 976-86
  • 28 Komissarenko N F, Chernobai V T, Komissarenko A N. New cardenolides from Gomphocarpus fruticosus leaves.  Chem Nat Compd (Engl Transl). 1997;  33 55-6
  • 29 Strømgaard K, Brierley M J, Andersen K, Sløk F A, Mellor I R, Usherwood P N. et al . Analogues of neuroactive polyamine wasp toxins that lack inner basic sites exhibit enhanced antagonism toward a muscle-type mammalian nicotinic acetylcholine receptor.  J Med Chem. 1999;  42 5224-34

Prof. Jerzy W. Jaroszewski

Department of Medicinal Chemistry

The Danish University of Pharmaceutical Sciences

Universitetsparken 2

2100 Copenhagen

Denmark

Fax: +45-3530-6040

Email: jj@dfuni.dk

>