References and Notes
<A NAME="RW14806ST-1A">1a</A>
Ugi I.
Meyr R.
Fetzer U.
Steinbruckner C.
Angew. Chem.
1959,
71:
386
<A NAME="RW14806ST-1B">1b</A>
Ugi I.
Steinbruckner C.
Angew. Chem.
1960,
72:
267
<A NAME="RW14806ST-2A">2a</A>
Domling A.
Ugi I.
Angew. Chem. Int. Ed.
2000,
39:
3168
<A NAME="RW14806ST-2B">2b</A>
Domling A.
Chem. Rev.
2006,
106:
17
<A NAME="RW14806ST-3A">3a</A>
Keating TA.
Armstrong RW.
J. Am. Chem. Soc.
1996,
118:
2574
<A NAME="RW14806ST-3B">3b</A>
Hulme C.
Peng J.
Morton G.
Salvino JM.
Herpin T.
Labaudiniere R.
Tetrahedron Lett.
1998,
39:
7227
<A NAME="RW14806ST-3C">3c</A>
Kennedy AL.
Andrew MF.
Josey JA.
Org. Lett.
2002,
4:
1167
<A NAME="RW14806ST-3D">3d</A>
Cuny G.
Bois-Choussy M.
Zhu J.
J. Am. Chem. Soc.
2004,
126:
14475
<A NAME="RW14806ST-4A">4a</A>
Cheng FL.
Waki M.
Minematsu Y.
Meienhofer J.
Izumiya N.
Chem. Lett.
1979,
823
<A NAME="RW14806ST-4B">4b</A>
Lin Q.
O’Neill JC.
Blackwell HE.
Org. Lett.
2005,
7:
4455
<A NAME="RW14806ST-5A">5a</A>
Failli A.
Immer H.
Gotz M.
Can. J. Chem.
1979,
57:
3257
<A NAME="RW14806ST-5B">5b</A>
Bayer T.
Riemer C.
Kessler H.
J. Peptide Sci.
2001,
7:
250
<A NAME="RW14806ST-6A">6a</A>
Groger H.
Hatam M.
Kintscher J.
Martens J.
Synth. Commun.
1996,
26:
3383
<A NAME="RW14806ST-6B">6b</A>
Domling A.
Nucleosides Nucleotides
1998,
17:
1667
<A NAME="RW14806ST-6C">6c</A>
Domling A.
Chi K.-Z.
Barrere M.
Bioorg. Med. Chem. Lett.
1999,
9:
2871
<A NAME="RW14806ST-6D">6d</A>
Maison W.
Schlemminger I.
Westerhoff O.
Martens J.
Bioorg. Med. Chem.
2000,
8:
1343
<A NAME="RW14806ST-6E">6e</A>
Kvumas Das B.
Shibata N.
Takeuchi Y.
J. Chem. Soc., Perkin Trans. 1
2002,
197
<A NAME="RW14806ST-6F">6f</A>
Baldoli C.
Maiorana S.
Licandro E.
Zinzalla G.
Perdicchia D.
Org. Lett.
2002,
4:
4314
<A NAME="RW14806ST-6G">6g</A>
Xu P.
Zhang T.
Wang W.
Zou X.
Zhang X.
Fu Y.
Synthesis
2003,
1171
<A NAME="RW14806ST-6H">6h</A>
Baldoli C.
Gianmimi C.
Licandro E.
Maiorana S.
Zinzalla G.
Synlett
2004,
1044
<A NAME="RW14806ST-7A">7a</A>
Zuckermann RN.
Kerr JM.
Kent SBH.
Moos WH.
J. Am. Chem. Soc.
1992,
114:
10646
<A NAME="RW14806ST-7B">7b</A>
Kerr JM.
Banville SC.
Zuckermann RN.
J. Am. Chem. Soc.
1993,
115:
2529
<A NAME="RW14806ST-7C">7c</A>
Karle IL.
Rao RB.
Prasad S.
Kaul R.
Balaram P.
J. Am. Chem. Soc.
1994,
116:
10355
<A NAME="RW14806ST-7D">7d</A>
Cornish VW.
Mendel D.
Schultz PG.
Angew. Chem., Int. Ed. Engl.
1995,
34:
621
<A NAME="RW14806ST-7E">7e</A>
Voyer N.
Lamothe J.
Tetrahedron
1995,
51:
9241
<A NAME="RW14806ST-8A">8a</A>
Ugi I.
Steinbruckner C.
Chem. Ber.
1961,
94:
2797
<A NAME="RW14806ST-8B">8b</A>
Keating TA.
Armstrong RW.
J. Org. Chem.
1998,
63:
867
<A NAME="RW14806ST-9A">9a</A>
Kazmaier U.
Hebach C.
Synlett
2003,
1591
<A NAME="RW14806ST-9B">9b</A>
Pick R.
Bauer M.
Kazmaier U.
Hebach C.
Synlett
2005,
757
<A NAME="RW14806ST-10A">10a</A>
Ugi I.
Offermann K.
Chem. Ber.
1964,
97:
2996
<A NAME="RW14806ST-10B">10b</A>
Costa SPG.
Maia HIS.
Pereira-Lima SMMA.
Org. Biomol. Chem.
2003,
1:
1475
<A NAME="RW14806ST-11A">11a</A>
Urban R.
Ugi I.
Angew. Chem., Int. Ed. Engl.
1975,
87:
61
<A NAME="RW14806ST-11B">11b</A>
Siglmüller F.
Herrmann R.
Ugi I.
Tetrahedron
1986,
42:
5931
<A NAME="RW14806ST-12A">12a</A>
Lehnhoff S.
Goebel M.
Karl RM.
Klosel R.
Ugi I.
Angew. Chem., Int. Ed. Engl.
1995,
34:
1104
<A NAME="RW14806ST-12B">12b</A>
Kunz H.
Pfrengle W.
J. Am. Chem. Soc.
1988,
110:
651
<A NAME="RW14806ST-12C">12c</A>
Kunz H.
Pfrengle W.
Sager W.
Tetrahedron Lett.
1989,
30:
4109
<A NAME="RW14806ST-12D">12d</A>
Linderman RJ.
Sophie B.
Samantha RP.
J. Org. Chem.
1999,
64:
336
<A NAME="RW14806ST-12E">12e</A>
Ziegler T.
Kaiser H.
Schlomer R.
Kunz C.
Tetrahedron
1999,
55:
8397
<A NAME="RW14806ST-12F">12f</A>
Oertel K.
Zech G.
Koch H.
Angew. Chem. Int. Ed.
2000,
39:
1431
<A NAME="RW14806ST-13">13</A>
The general procedure of this method is shown as follows: An aldehyde component (1
mmol), 2-nitrobenzylamine (1 mmol), and MeOH (5 mL) were mixed in a 10-mL quartz flask
until the mixture became a clear solution. An isocyanide component (1 mmol) and a
carboxylic acid component (1 mmol) were added into the solution and the mixture was
stirred at r.t. for 2 d. Then the mixture was irradiated in a quartz flask inside
a Rayonet photochemical reactor with four 254-nm lamps at r.t. The reaction was monitored
by 1H NMR spectroscopy, and the reaction was complete in 6-13 h. After the reaction was
completed, MeOH was removed by a rotary evaporator, and the residue was purified by
column chromatography to get the dipeptides 1a-1e.1a: Light brown solid; mp 119 °C; yield: 93%. 1H NMR (CD3OD): δ = 0.94 (d, J = 7.6 Hz, CH3, 3 H), 0.96 (d, J = 7.6 Hz, CH3, 3 H), 2.14-2.15 (m, 1 H, CH), 2.20 (s, 3 H, CH3), 4.37 (d, J = 8.4 Hz, CH, 1 H), 7.06 (d, J = 8.2 Hz, PhH, 2 H), 7.44-7.47 (m, 5 H, PhH), 7.84 (d, J = 8.2 Hz, PhH, 2 H). 13C NMR (CDCl3): δ = 19.46, 19.74, 20.83, 31.19, 60.81, 120.39, 128.23, 129.00, 129.81, 132.12,
133.55, 134.95, 136.82, 167.98, 171.04. IR (thin film): 1654, 1642 (C=O) cm-1.1b: Brown oil; yield: 84%. 1H NMR (CDCl3): δ = 0.89 (d, J = 7.2 Hz, CH3, 3 H), 1.22 (m, 2 H, CH2), 1.27-1.29 (m, 4 H, CH2), 1.55-1.57 (m, 2 H, CH2), 1.67-1.69 (m, 4 H, CH2), 2.18 (t, J = 7.4 Hz, CH2, 2 H), 3.56-3.58 (m, 1 H, CH), 5.37 (s, 1 H, CH), 7.22-7.26 (m, 1 H, PhH), 7.34-7.36
(m, 1 H, PhH), 7.41-7.43 (m, 1 H, PhH), 7.57 (s, 1 H, PhH). 13C NMR (CDCl3): δ = 16.45, 22.75, 28.51, 28.56, 29.07, 35.95, 36.08, 41.00, 60.39, 125.96, 129.70,
133.84, 134.65, 135.41, 144.43, 173.31, 178.13. IR (thin film): 1649, 1634 (C=O) cm-1.1c: Red brown oil; yield: 89%. 1H NMR (CDCl3): δ = 1.22-1.27 (m, 4 H, CH2), 1.27-1.29 (m, 2 H, CH2), 1.66-1.70 (m, 4 H, CH2), 3.67-3.69 (m, 1 H, CH), 5.63 (s, 1 H, CH), 7.36-7.39 (m, 3 H, PhH), 7.49 (d, 2
H, PhH), 7.63-7.66 (m, 2 H, PhH), 7.75-7.79 (m, 1 H, PhH), 8.10-8.14 (m, 2 H, PhH).
13C NMR (CDCl3): δ = 26.06, 26.12, 26.63, 33.50, 33.66, 50.15, 59.25, 125.49, 128.76, 129.32, 129.76,
130.41, 131.88, 133.69, 135.05, 138.63, 147.81, 168.95, 171.14. IR (thin film): 1650,
1629 (C=O) cm-1.1d: Light yellow oil; yield: 68%. 1H NMR (CD3OD): δ = 0.92 (d, J = 6.9 Hz, CH3, 3 H), 0.95 (d, J = 6.9 Hz, CH3, 3 H), 1.44 (s, 9 H, CH3), 1.64-1.66 (m, 2 H, CH2), 1.73-1.75 (m, 2 H, CH2), 1.85-1.87 (m, 1 H, CH), 2.10-2.12 (m, 4 H, CH2), 3.77-3.79 (m, 2 H, CH2), 4.22 (dd, J = 7.8, 8.1 Hz, 1 H, CH), 5.29 (t, J = 5.4 Hz, 1 H, CH). 13C NMR (CDCl3): δ = 19.24, 25.41, 26.99, 28.25, 29.68, 32.72, 41.96, 44.60, 57.93, 80.59, 97.23,
124.10, 156.32, 169.91, 173.55. IR (thin film): 1701, 1672, 1648 (C=O) cm-1.1e: Red brown oil; yield: 89%. 1H NMR (CDCl3): δ = 0.90 (t, J = 7.3 Hz, CH3, 3 H), 1.39-1.41 (m, 2 H, CH2), 1.68-1.70 (m, 1 H, CH2), 1.88-1.90 (m, 1 H, CH2), 2.02 (s, 3 H, CH3), 2.29 (s, 3 H, CH3), 4.59 (q, J = 6.9 Hz, 1 H, CH), 7.09 (d, J = 8.4 Hz, 2 H, PhH), 7.41 (d, J = 8.4 Hz, 2 H, PhH). 13C NMR (CDCl3): δ = 13.78, 18.89, 20.85, 23.18, 34.30, 53.84, 120.01, 129.41, 134.06, 135.16, 170.01,
170.69. IR (thin film): 1679, 1651 (C=O) cm-1.