References and Notes
1a
Yanagisawa A.
Habaue S.
Yamamoto H.
J. Am. Chem. Soc.
1991,
113:
8955
1b
Yanagisawa A.
Habaue S.
Yasue K.
Yamamoto H.
J. Am. Chem. Soc.
1994,
116:
6130
Reviews:
1c
Yanagisawa A.
Yamamoto H. In
Active Metals. Preparation, Characterization, Applications
Fürstner A.
VCH;
Weinheim:
1996.
p.61
1d
Yanagisawa A. In
Science of Synthesis
Vol. 7:
Yamamoto H.
Thieme;
Stuttgart:
2004.
p.695
1e
Yanagisawa A. In
Main Group Metals in Organic Synthesis
Vol. 1:
Yamamoto H.
Oshima K.
Wiley-VCH;
Weinheim:
2004.
p.175
For reactions of organostrontium compounds, see:
1f
Miyoshi N.
Kamiura K.
Oka H.
Kita A.
Kuwata R.
Ikehara D.
Wada M.
Bull. Chem. Soc. Jpn.
2004,
77:
341
1g
Miyoshi N.
Ikehara D.
Kohno T.
Matsui A.
Wada M.
Chem. Lett.
2005,
34:
760
1h
Miyoshi N. In
Science of Synthesis
Vol. 7:
Yamamoto H.
Thieme;
Stuttgart:
2004.
p.685
2a
Sell MS.
Rieke RD.
Synth. Commun.
1995,
25:
4107
Reviews:
2b
Rieke RD.
Sell MS.
Klein WR.
Chen T.-A.
Brown JD.
Hanson MV. In
Active Metals. Preparation, Characterization, Applications
Fürstner A.
VCH;
Weinheim:
1996.
p.1
2c
Rieke RD.
Hanson MV.
Tetrahedron
1997,
53:
1925
3
Yanagisawa A.
Takahashi H.
Arai T.
Chem. Commun.
2004,
580
For other reactions via a barium enolate, see:
4a
Yamada YMA.
Shibasaki M.
Tetrahedron Lett.
1998,
39:
5561
4b
Yamada YMA.
Uozumi Y.
Org. Lett.
2006,
8:
1375
For reviews of catalytic direct aldol reaction with unmodified ketones, see:
5a
Gröger H.
Wilken J.
Angew. Chem. Int. Ed.
2001,
40:
529
5b
List B.
Synlett
2001,
1675
5c
Matsunaga S.
Ohshima T.
Shibasaki M.
Adv. Synth. Catal.
2002,
344:
3
5d
Palomo C.
Oiarbide M.
García JM.
Chem. Eur. J.
2002,
8:
36
5e
Alcaide B.
Almendros P.
Angew. Chem. Int. Ed.
2003,
42:
858
5f
Shibasaki M.
Yoshikawa N.
Matsunaga S.
In Comprehensive Asymmetric Catalysis
Suppl. 1:
Jacobsen EN.
Pfaltz A.
Yamamoto H.
Springer;
Heidelberg:
2004.
p.135
5g
Modern Aldol Reactions
Vol. 1 and 2:
Mahrwald R.
Wiley-VCH;
Weinheim:
2004.
5h Quite recently, Kobayashi et al. reported direct aldol reactions of amides with aldehydes catalyzed by barium phenoxides: Saito S.
Kobayashi S.
J. Am. Chem. Soc.
2006,
128:
8704
For recent noticeable examples of Michael addition of enolates, see:
6a
Harada S.
Kumagai N.
Kinoshita T.
Matsunaga S.
Shibasaki M.
J. Am. Chem. Soc.
2003,
125:
2582
6b
Gnaneshwar R.
Wadgaonkar PP.
Sivaram S.
Tetrahedron Lett.
2003,
44:
6047
6c
Miura K.
Nakagawa T.
Hosomi A.
Synlett
2003,
2068
6d
Miura K.
Nakagawa T.
Hosomi A.
Synlett
2005,
1917
6e
Wang X.
Adachi S.
Iwai H.
Takatsuki H.
Fujita K.
Kubo M.
Oku A.
Harada T.
J. Org. Chem.
2003,
68:
10046
6f
Harada T.
Adachi S.
Wang X.
Org. Lett.
2004,
6:
4877
6g
Harada T.
Yamauchi T.
Adachi S.
Synlett
2005,
2151
6h
Jaber N.
Assié M.
Fiaud J.-C.
Collin J.
Tetrahedron
2004,
60:
3075
6i
Nakagawa T.
Fujisawa H.
Nagata Y.
Mukaiyama T.
Bull. Chem. Soc. Jpn.
2005,
78:
236
6j
Kumaraswamy G.
Jena N.
Sastry MNV.
Padmaja M.
Markondaiah B.
Adv. Synth. Catal.
2005,
347:
867
6k
Wang W.
Li H.
Wang J.
Org. Lett.
2005,
7:
1637
7 We examined catalytic activity of NaOi-Pr, KOi-Pr, and Mg(Oi-Pr)2 in the present reaction, however, these metal isopropoxides were found to be less effective, [M(Oi-Pr)n, equiv, time, yield]: NaOi-Pr, 0.4 equiv, 4 h, 40%; KOi-Pr, 0.4 equiv, 4 h, 35%; Mg(Oi-Pr)2, 0.2 equiv, 18 h, <1%.
8
Typical Procedure for Tandem Cross-Coupling Reaction of Ketones with Aldehydes Catalyzed by Barium Isopropoxide: Synthesis of 1,3,5-Triphenylpentane-1,5-dione (Entry 2 in Table 3).
An oven-dried, 30 mL two-necked round-bottomed flask equipped with a Teflon®-coated magnetic stirring bar was flushed with argon. Then, Ba(Oi-Pr)2 (26 mg, 0.10 mmol) was put into the apparatus and covered with dry DMF (5 mL) and i-PrOH (1.5 mL, 20 mmol), and the mixture was stirred for 10 min at r.t. To the resulting solution were added acetophenone (0.35 mL, 3.0 mmol) and benzaldehyde (0.10 mL, 1.0 mmol). After being stirred for 7 h at r.t., the mixture was treated with a sat. aq NH4Cl solution (10 mL) at this temperature and the aqueous layer was extracted with Et2O (20 mL). The combined organic extracts were dried over anhyd Na2SO4 and concentrated in vacuo after filtration. The residual crude product was purified by column chromatog-raphy on silica gel to give the 1,5-diketone (0.25 g, 76% yield) as colorless crystals.
Spectral Data of the Product.
TLC: R
f
= 0.52 (hexane-EtOAc, 3:1). IR (KBr): 3062, 3025, 2960, 2888, 1686, 1668, 1597, 1580, 1496, 1449, 1422, 1408, 1352, 1268, 1207 cm-1. 1H NMR (400 MHz, CDCl3): δ = 3.36 (dd, 2 H, J = 16.4 Hz, 7.0 H, CH2), 3.50 (dd, 2 H, J = 16.7 Hz, 7.0 H, CH2), 4.04-4.11 (m, 1 H, CH), 7.15-7.21 (m, 1 H, arom.), 7.24-7.29 (m, 4 H, arom.), 7.43-7.46 (m, 4 H, arom.), 7.53-7.57 (m, 2 H, arom.), 7.94-7.96 (m, 4 H, arom.). 13C NMR (100 MHz, CDCl3): δ = 36.5, 44.4, 126.2, 127.1, 127.3, 127.7, 128.1, 132.6, 136.4, 143.5, 198.0. The above-mentioned spectral data (IR, 1H NMR, and 13C NMR) of the product indicated good agreement with reported data.
[9]
9a
Boyer J.
Corriu RJP.
Perz R.
Reye C.
J. Organomet. Chem.
1980,
184:
157
9b
Kobayashi T.
Kawate H.
Kakiuchi H.
Kato H.
Bull. Chem. Soc. Jpn.
1990,
63:
1937
9c
Shimizu S.
Shirakawa S.
Suzuki T.
Sasaki Y.
Tetrahedron
2001,
57:
6169