Abstract
Traditional strategies in indole chemistry do not allow high-yielding access to some
substitution patterns such as 3,5,7-trisubstituted indoles. We report in this article
the efficient synthesis of this type of indole. The Heck cyclisation strategy we used
allows the synthesis of 7-iodo-, 7-alkoxy-, 7-amino-, and 7-nitroindoles bearing other
functionalities at the 3- and 5-positions. We believe that the mild conditions used
should allow the preparation of indoles with a wide range of substituents in these
two positions as shown by the synthesis of a 5-bromo-7-iodoindole. However, this strategy
has some limitations in the case of very electron-deficient indoles such as a 7-nitroindole
where the aromatisation of the 7-nitrodihydroindole intermediate is not complete.
In this case, Larock’s indole synthesis from disubstituted acetylenes proved to be
more appropriate.
Key words
indoles - Heck reaction - palladium - 2-vinylanilines - Larock’s cyclisation
References
<A NAME="RP06906SS-1">1 </A>
Saxton JE.
The Chemistry of Heterocyclic Compounds
Vol. 25, Part IV:
Wiley;
New York:
1983.
<A NAME="RP06906SS-2">2 </A>
A search for the indole core in the WDI database retrieved more than 3700 hits. See
also ref. 12a.
<A NAME="RP06906SS-3">3 </A>
Charrier N.
Demont E.
Dunsdon R.
Maile G.
Naylor A.
O’Brien A.
Redshaw S.
Theobald P.
Vesey D.
Walter D.
Synlett
2005,
3071
<A NAME="RP06906SS-4A">4a </A>
Heath-Brown B.
Philpott PG.
J. Chem. Soc.
1965,
7185
<A NAME="RP06906SS-4B">4b </A>
McKittrick B.
Failli A.
Steffan RJ.
Soll RM.
Schmid J.
Asselin AA.
Shaw CC.
Noureldin R.
Gavin G.
J. Heterocycl. Chem.
1990,
27:
2151
<A NAME="RP06906SS-5">5 </A>
Bartoli G.
Palmieri G.
Bosco M.
Dalpozzo R.
Tetrahedron Lett.
1989,
30:
2129
<A NAME="RP06906SS-6A">6a </A>
Clark RD.
Repke DB.
Heterocycles
1984,
22:
195
<A NAME="RP06906SS-6B">6b </A>
Moyer MP.
Shiurba JF.
Rapoport H.
J. Org. Chem.
1986,
51:
5106
For a review on the use of transition metals in the synthesis and functionalisation
of indoles, see:
<A NAME="RP06906SS-7A">7a </A>
Hegedus LS.
Angew. Chem., Int. Ed. Engl.
1988,
27:
1113
For a recent and very well-documented review on the synthesis of indoles through palladium-catalysed
reactions, see:
<A NAME="RP06906SS-7B">7b </A>
Cacchi S.
Fabrizi G.
Chem. Rev.
2005,
105:
2873
<A NAME="RP06906SS-8">8 </A>
Hartung CG.
Fecher A.
Chapell B.
Snieckus V.
Org. Lett.
2003,
5:
1899
<A NAME="RP06906SS-9A">9a </A>
Somei M.
Saida Y.
Heterocycles
1985,
23:
3113
<A NAME="RP06906SS-9B">9b </A>
Somei M.
Yamada F.
Hamada H.
Kawasaki T.
Heterocycles
1989,
29:
643
<A NAME="RP06906SS-10">10 </A>
Iwao M.
Heterocycles
1994,
38:
45
<A NAME="RP06906SS-11">11 </A> This list is not exhaustive. For example, since the completion of this work,
a one-pot synthesis of indoles via enamines has been reported, see:
Barluenga J.
Fernandez MA.
Aznar F.
Valdes C.
Chem. Eur. J.
2005,
11:
2276 ; see also ref. 7b
For a very comprehensive overview of the challenges posed by the synthesis of 7-substituted
indoles, see:
<A NAME="RP06906SS-12A">12a </A>
Ezquerra J.
Pedregal C.
Lamas C.
Barluenga J.
Perez M.
Garcia-Martin MA.
Gonzales JM.
J. Org. Chem.
1996,
61:
5804 ; and references cited therein
<A NAME="RP06906SS-12B">12b </A>
Rodriguez AL.
Koradin C.
Dohle W.
Knochel P.
Angew. Chem. Int. Ed.
2000,
39:
2488 ; and references cited therein
<A NAME="RP06906SS-12C">12c </A>
Koradin C.
Dohle W.
Rodriguez AL.
Schmid B.
Knochel P.
Tetrahedron
2003,
59:
1571
It is possible to functionalise the 3-position in situ, but it needs concomitant substitution
at the 2-position:
<A NAME="RP06906SS-13A">13a </A>
Arcadi A.
Cacchi S.
Marinelli F.
Tetrahedron Lett.
1992,
33:
3915
<A NAME="RP06906SS-13B">13b </A>
Arcadi A.
Cacchi S.
Carcinelli V.
Marinelli F.
Tetrahedron
1994,
50:
437
<A NAME="RP06906SS-14">14 </A>
Okauchi T.
Itonaga M.
Minami T.
Owa T.
Kitoh K.
Yoshino H.
Org. Lett.
2000,
2:
1485
<A NAME="RP06906SS-15">15 </A>
Iwao M.
Motoi O.
Fukuda T.
Ishibashi F.
Tetrahedron
1998,
54:
8999
<A NAME="RP06906SS-16">16 </A>
Heydari A.
Mehrdad M.
Maleki A.
Ahmadi N.
Synthesis
2004,
1563
<A NAME="RP06906SS-17A">17a </A>
Odle R.
Blevins B.
Ratcliff M.
Hegedus LS.
J. Org. Chem.
1980,
45:
2709
<A NAME="RP06906SS-17B">17b </A>
Yang S.
Chung W.
Indian J. Chem., Sect. B
1999,
38:
897
<A NAME="RP06906SS-18A">18a </A>
Larock RC.
Yum EK.
Refvik MD.
J. Org. Chem.
1998,
63:
7652
For application to total synthesis, see:
<A NAME="RP06906SS-18B">18b </A>
Chen C.
Lieberman DR.
Larsen RD.
Reamer RA.
Verhoeven TR.
Reider PJ.
Tetrahedron Lett.
1994,
35:
6981
<A NAME="RP06906SS-18C">18c </A>
Liu X.
Deschamp JR.
Cook JM.
Org. Lett.
2002,
4:
3339
<A NAME="RP06906SS-19">19 </A>
Hegedus LS.
Allen GF.
Bozell JJ.
Waterman EL.
J. Am. Chem. Soc.
1978,
100:
5800
<A NAME="RP06906SS-20A">20a </A>
O’Shea DF.
Kerins F.
J. Org. Chem.
2002,
67:
4968
<A NAME="RP06906SS-20B">20b </A>
Coleman CM.
O’Shea DF.
J. Am. Chem. Soc.
2003,
125:
4054
<A NAME="RP06906SS-21">21 </A>
The synthesis of the 7-substituted indoles will be described with ethyl or n -propyl at the 3-position. The synthetic routes described in this paper are applicable
to both substituents.
<A NAME="RP06906SS-22">22 </A>
Macor JE.
Ogilvie RJ.
Wythes MJ.
Tetrahedron Lett.
1996,
37:
4289
<A NAME="RP06906SS-23A">23a </A>
Jeffery T.
David M.
Tetrahedron Lett.
1998,
39:
5751
<A NAME="RP06906SS-23B">23b </A>
Jeffery T.
Tetrahedron
1996,
52:
10113
Reviews:
<A NAME="RP06906SS-23C">23c </A>
De Meijere A.
Meyer FE.
Angew. Chem., Int. Ed. Engl.
1994,
33:
2379
<A NAME="RP06906SS-23D">23d </A>
Jeffery T. In Advances in Metal-Organic Chemistry
Vol. 5:
Liebeskind LS.
JAI Press;
Greenwich CT:
1996.
p.153-260
<A NAME="RP06906SS-24">24 </A> For a recent synthesis of 7-hydroxy-indole, see:
Lerman L.
Weinstock-Rosin M.
Nudelman A.
Synthesis
2004,
3043
<A NAME="RP06906SS-25">25 </A>
Bosch J.
Roca T.
Armengol M.
Fernandez-Forner D.
Tetrahedron
2001,
57:
1041 ; see also ref. 22
<A NAME="RP06906SS-26">26 </A> For a review on iodination of aryl compounds, see:
Merkushev EB.
Synthesis
1988,
923
<A NAME="RP06906SS-27">27 </A> This side reaction is not observed with 2-nitro aniline:
Ragagnin G.
Knochel P.
Synlett
2004,
951
Bis(pyridine)iodonium(I) tetrafluoroborate is also efficient for high-yielding selective
iodination of aniline; see ref. 12a and:
<A NAME="RP06906SS-28A">28a </A>
Barluenga J.
Gonzalez JM.
Garcia-Martin MA.
Campos PJ.
Asensio G.
J. Org. Chem.
1993,
58:
2058
<A NAME="RP06906SS-28B">28b </A>
Barluenga J.
Rodriguez MA.
Campos PJ.
J. Org. Chem.
1990,
55:
3104
<A NAME="RP06906SS-29">29 </A>
Gardiner JM.
Loyns CR.
Schwalbe CH.
Barrett GC.
Lowe PR.
Tetrahedron
1995,
51:
4101. Methyl 4-bromo-1-hydroxy-2-[(E )-prop-1-enyl]-1H -benzimidazole-6-carboxylate(23a ) has the following characteristics: white solid; mp 186-188 °C; 1 H NMR (400 MHz, DMSO-d
6 ): δ = 2.02 (dd, J = 7.2, 2.0 Hz, 3 H), 3.89 (s, 3 H), 6.68 (dd, J = 14.0, 2.0 Hz, 1 H), 7.17 (dq, J = 14.0, 7.2 Hz, 1 H), 7.95 (s, 1 H), 8.00 (s, 1 H), 12.70 (br s, 1 H); 13 C NMR (100.6 MHz, DMSO-d
6 ): δ = 18.7, 52.3, 110.2, 111.4, 116.0, 124.1, 125.1, 132.4, 138.6, 139.5, 150.2,
165.3; ESI-MS: m /z = 310.9, 312.9 [M + H+ ]
<A NAME="RP06906SS-30">30 </A>
An NOE experiment proved that the stereochemistry of the exocyclic double bond is
as shown in Scheme
[7 ]
.
<A NAME="RP06906SS-31">31 </A>
Hegedus LS.
Mulhern TA.
Mori A.
J. Org. Chem.
1985,
50:
4282 ; See also ref. 17b
<A NAME="RP06906SS-32">32 </A>
Sakamoto T.
Kondo Y.
Uchiyama M.
Yamanaka H.
J. Chem. Soc., Perkin Trans. 1
1993,
1941
<A NAME="RP06906SS-33">33 </A>
See references 133d and 136a-e cited in ref. 7b.
<A NAME="RP06906SS-34">34 </A>
Compounds 28a and 28b are drawn as acids for convenience, but are isolated as trimers. See ref. 20a.
Sulfonamide:
<A NAME="RP06906SS-35A">35a </A>
Krolski ME.
Renaldo AF.
Rudisill DE.
Stille JK.
J. Org. Chem.
1988,
53:
1170
Acetanilide:
<A NAME="RP06906SS-35B">35b </A>
Kasahara A.
Izumi T.
Murakami S.
Miyamoto K.
Hino T.
J. Heterocycl. Chem.
1989,
26:
1405
Anilines:
<A NAME="RP06906SS-35C">35c </A>
Yamaguchi M.
Arisawa M.
Hirama M.
Chem. Commun.
1998,
1399
<A NAME="RP06906SS-35D">35d </A>
Adams DR.
Duncton MAJ.
Roffey JRA.
Spencer J.
Tetrahedron Lett.
2002,
43:
7581
<A NAME="RP06906SS-36">36 </A> The synthesis of indoles from 2-halogenated anilines and a (2-alkoxyvinyl)boronic
ester, followed by hydrolysis and in situ cyclisation has also been described. However,
the synthesis of the (2-alkoxyvinyl)boronic ester requires two steps and we felt this
route would not offer significant advantages compared to the others (see below):
Satoh M.
Miyaura N.
Suzuki A.
Synthesis
1987,
373
<A NAME="RP06906SS-37">37 </A>
The structure of 30 was assigned by an NOE experiment.
<A NAME="RP06906SS-38">38 </A>
We ensured that we were able to reproduce Larock’s results on 2-iodoaniline. Under
the same conditions, methyl 4-amino-3-iodo-benzoate gave a 94:6 mixture of isomers.
Within this set of examples, the selectivity appears related to the electron deficiency
of the aromatic ring.
<A NAME="RP06906SS-39">39 </A>
We did not attempt to increase the yield of the ring formation by using substituents
more stable than trimethylsilyl to the reaction conditions, since the yield obtained
was adequate for our purposes.
<A NAME="RP06906SS-40">40 </A>
Removal of the trifluoroacetamido group proved easier for 25 (deprotection takes 45 minutes at room temperature) than for 14 (deprotection not complete after two days under similar conditions).
<A NAME="RP06906SS-41">41 </A>
Wheeler L.
Am. Chem. J.
1909,
42:
457
<A NAME="RP06906SS-42">42 </A>
Dains V.
Vaughan J.
J. Am. Chem. Soc.
1918,
40:
932
<A NAME="RP06906SS-43">43 </A>
Borsche W.
Stackmann L.
Makaroff-Semljanski J.
Chem. Ber.
1916,
49:
2230