Horm Metab Res 2006; 38(8): 481-485
DOI: 10.1055/s-2006-949527
Original Basic

© Georg Thieme Verlag KG Stuttgart · New York

Leptin Acute Modulation of the 5′-deiodinase Activities in Hypothalamus, Pituitary and Brown Adipose Tissue of Fed Rats

A. Cabanelas 1 , P. C. Lisboa 2 , E. G. Moura 2 , C. C. Pazos-Moura 1
  • 1Laboratório de Endocrinologia Molecular, Instituto de Biofísica Carlos Chagas Filho, UFRJ, CCS, Bloco G, Cidade Universitária, Rio de Janeiro, RJ, Brazil
  • 2Laboratório de Fisiologia Endócrina, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcântara Gomes, UERJ, Rio de Janeiro, RJ, Brazil
Weitere Informationen

Publikationsverlauf

Received 24 November 2005

Accepted after revision 14 February 2006

Publikationsdatum:
29. August 2006 (online)

Abstract

Leptin and thyroid hormones (TH) have the ability to increase energy expenditure. Biological effects of TH are dependent on thyroxine (T4) to triiodothyronine (T3) conversion by deiodinase type 1 (D1) and type 2 (D2). Leptin has been shown to stimulate the hypothalamus-pituitary-thyroid axis and, also, to modulate 5′-deiodinases in different tissues, depending on energetic status of animals. Here, we examined the acute effects of leptin on hypothalamic, pituitary and BAT D2 and pituitary D1 activities. Male fed rats received a single subcutaneous injection of saline or leptin (8 μg/100 g BW) and sacrificed 2 hours later. Leptin promoted an important decrease in hypothalamic D2 (55% reduction, p <0.001) with no changes in pituitary D2, in concomitance with a 2-fold rise in serum TSH, suggesting that leptin acted at hypothalamus in order to stimulate TRH-TSH axis. In addition, BAT D2 was decreased by 25% (p<0.05). In contrast, pituitary D1 showed a 2-fold increase (p<0.001), indicating that, as demonstrated before for liver and thyroid D1, the pituitary enzyme is also acutely up-regulated by leptin. Serum concentrations of insulin and TH of leptin-injected animals remained unchanged. Regulation of 5′-deiodinases directing the local T3 production, is a mechanism by which leptin may alter hypothalamic, pituitary and BAT functions.

References

  • 1 Flier JS. Clinical review 94: What's in a name? In search of leptin's physiologic role.  J Clin Endocrinol Metab. 1998;  83 1407-1413
  • 2 Passos MCF, Vicente LL, Lisboa PC, Moura EG. Absence of anorectic effect to acute peripheral leptin treatment in adult rats whose mothers were malnourished during lactation.  Horm Metab Res. 2004;  36 625-629
  • 3 Bonomo IT, Lisboa PC, Passos MCF, Pazos-Moura CC, Reis AM, Moura EG. Prolactin inhibition in lactating rats changes leptin transfer through the milk.  Horm Metab Res. 2005;  37 220-225
  • 4 Popovic V, Duntas LH. Leptin TRH and ghrelin: influence on energy homeostasis at rest and during exercise.  Horm Metab Res. 2005;  37 533-537
  • 5 Silva JE. The thermogenic effect of thyroid hormone and its clinical implications.  Ann Intern Med. 2003;  139 205-213
  • 6 Larsen PR, Davies TF, Hay ID. The Thyroid Gland. In: Wilson JD, Foster DW, Kronenberg HM, Larsen PR (eds). Williams's textbook of endocrinology Philadelphia: WB Saunders Co 1998: 389-515
  • 7 Ahima RS, Prabakaran D, Mantzoros C, Qu D, Lowell B, Maratos-Flier E, Flier SJ. Role of leptin in the neuroendocrine response to fasting.  Nature. 1996;  382 250-252
  • 8 Seoane LM, Carro E, Tovar S, Casanueva FF, Dieguez C. Regulation of in vivo TSH secretion by leptin.  Regul Pept. 2000;  92 25-29
  • 9 Ortiga-Carvalho TM, Oliveira KJ, Soares BA, Pazos-Moura CC. The role of leptin in the regulation of TSH secretion in the fed state: in vivo and in vitro studies.  J Endocrinol. 2002;  174 121-125
  • 10 Veiga MALC, Oliveira KJ, Curty FH, Pazos-Moura CC. Thyroid hormones modulate the endocrine and autocrine/paracrine actions of leptin on thyrotropin secretion.  J Endocrinol. 2004;  183 243-247
  • 11 Farooqi SI, Matarese G, Lord GM, Keogh JM, Lawrence E, Agwu C, Sanna V, Jebb SA, Perna F, Fontana S, Lechler RI, DePaoli AM, O'Rahilly S. Beneficial effects of leptin on obesity, T cell hyporesponsiveness, and neuroendocrine/metabolic dysfunction of human congenital leptin deficiency.  J Clin Invest. 2002;  110 1093-1103
  • 12 Chan JL, Heist K, DePaoli AM, Veldhuis JD, Mantzoros CS. The role of falling leptin levels in the neuroendocrine and metabolic adaptation to short-term starvation in healthy men.  J Clin Invest. 2003;  111 1409-1421
  • 13 Légrádi G, Emerson CH, Ahima RS, Flier JS, Lechan RM. Leptin prevents fasting-induced suppression of prothyrotropin-releasing hormone messenger ribonucleic acid in neurons of the hypothalamic paraventricular nucleus.  Endocrinology. 1997;  138 2569-2576
  • 14 Nillni EA, Aslet C, Harris M, Hollenberg A, Bjorbak C, Flier JS. Leptin regulates prothyrotropin-releasing hormone biosynthesis. Evidence for direct and indirect pathways.  J Biol Chem. 2000;  275 36124-36133
  • 15 Harris M, Aschkenasi C, Elias CF, Chandrankunnel A, Nillni EA, Bjorbaek C, Elmquist JK, Flier JS, Hollenberg AN. Transcriptional regulation of the thyrotropin-releasing hormone gene by leptin and melanocortin signaling.  J Clin Invest. 2001;  107 111-120
  • 16 Coppola A, Meli R, Diano S. Inverse shift in circulating corticosterone and leptin levels elevates hypothalamic deiodinase type 2 in fasted rats.  Endocrinol. 2005;  146 2827-2833
  • 17 Coppola A, Hughes J, Esposito E, Schiavo L, Meli R, Diano S. Suppression of hypothalamic deiodinase type II activity blunts TRH mRNA decline during fasting.  FEBS Lett. 2005;  579 4654-4658
  • 18 Cusin I, Rouru J, Visser T, Burger AG, Rohner-Jeanrenaud F. Involvement of thyroid hormones in the effect of intra-cerebroventricular leptin infusion on uncoupling protein-3 expression in rat muscle.  Diabetes. 2000;  49 1101-1105
  • 19 Lisboa PC, Oliveira KJ, Cabanelas A, Ortiga-Carvalho TM, Pazos-Moura CC. Acute cold exposure, leptin, and somatostatin analog (octreotide) modulate thyroid 5′-deiodinase activity.  Am J Physiol Endocrinol Metab. 2003;  284 E1172-E1176
  • 20 Cettour-Rose P, Burger AG, Meier CA, Visser TJ, Rohner-Jeanrenaud F. Central stimulatory effect of leptin on T3 production is mediated by brown adipose tissue type 2 deiodinase.  Am J Physiol Endocrinol Metab. 2002;  283 E980-E987
  • 21 Pazos-Moura CC, Moura EG, Dorris ML, Rehnmark S, Melendez L, Silva JE, Taurog A. Effect of iodine deficiency and cold exposure on thyroxine 5′-deiodinase activity in various rat tissues.  Am J Physiol Endocrinol Metab. 1991;  260 E175-E182
  • 22 Curty FH, Lisboa PC, Ortiga-Carvalho TM, Pazos-Moura CC. The somatostatin analogue octreotide modulates iodothyronine deiodinase activity and pituitary neuromedin B.  Thyroid. 2000;  10 647-652
  • 23 Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.  Anal Biochem. 1976;  72 248-254
  • 24 Ortiga-Carvalho TM, Polak J, McCann S, Pazos-Moura CC. Effect of thyroid hormones on pituitary neuromedin B and possible interaction between thyroid hormones and neuromedin B on thyrotropin secretion.  Regul Pept. 1996;  67 47-53
  • 25 Kates AL, Himms-Hagen J. Defective cold-induced stimulation of thyroxine 5′-deiodinase in brown adipose tissue of the genetically obese (ob/ob mouse).  Biochem Biophys Res Commun. 1985;  130 188-193
  • 26 Kaplan MM, Young JB. Abnormal thyroid hormone deiodination of ob/ob and db/db obese mice.  Endocrinology. 1987;  120 886-893
  • 27 Florant GL, Porst H, Peiffer A, Hudachek SF, Pittman C, Summers SA, Rajala MW, Scherer PE. Fat-cell mass, serum leptin and adiponectin changes during weight gain and loss in yellow-bellied marmots (Marmota flaviventris).  J Comp Physiol. 2004;  174 633-639
  • 28 Liu XT, Lin QS, Li QF, Huang CX, Sun RY. Uncoupling protein mRNA, mitochondrial GTP-binding, and T4 5′-deiodinase activity of brown adipose tissue in Daurian ground squirrel during hibernation and arousal.  Comp Biochem Physiol A Mol Integr Physiol. 1998;  120 745-752
  • 29 Saleri R, Grasselli F, Tamanini C. Effects of different culture conditions and leptin on GH mRNA expression and GH secretion by pituitary cells.  Horm Metab Res. 2005;  37 214-219
  • 30 Malendowicz LK, Gorska T, Tortorella C, Nowak M, Majchrzak M, Spinazzi R, Nussdorfer GG, Nowak KW. Acute in vivo effects of leptin and leptin fragments on corticosteroid hormone secretion and entero-insular axis in the rat.  Int J Mol Med. 2004;  13 829-834
  • 31 Silva JE, Larsen PR. Hormonal regulation of iodothyronine 5′-deiodinase in rat brown adipose tissue.  Am J Physiol Endocrinol Metab. 1986;  251 E639-E643
  • 32 Hillgartner FB, Romsos DR. Regulation of iodothyronine 5′-deiodinase in lean and obese (ob/ob) mice.  Am J Physiol Endocrinol Metab. 1985;  249 E209-E218
  • 33 Mobley PW, Dubuc PU. Thyroid hormone levels in the developing obese-hyperglycemic syndrome.  Horm Metab Res. 1979;  11 37-39
  • 34 Montague CT, Farooqi IS, Whitehead JP, Soos MA, Rau H, Wareham NJ, Sewter CP, Digby JE, Mohammed SN, Hurst JA, Cheetham CH, Earley AR, Barnett AH, Prins JB, O'Rahilly S. Congenital leptin deficiency is associated with severe early-onset obesity in humans.  Nature. 1997;  387 903-908
  • 35 Clément K, Vaisse C, Lahlou N, Cabrol S, Pelloux V, Cassuto D, Gourmelen M, Dina C, Chambaz J, Lacorte JM, Basdevant A, Bougnères P, Lebouc Y, Froguel P, Guy-Grand B. A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction.  Nature. 1998;  392 398-401

Correspondence

Carmen C. Pazos de Moura

Laboratório de Endocrinologia Molecular·Instituto de Biofísica Carlos Chagas Filho·UFRJ, CCS, Bloco G·Cidade Universitária

Ilha do Fundão·CEP 21949·900·Rio de Janeiro, RJ·Brazil

Telefon: +55/21/25 60 80 93 ext. 213

Fax: +55/21/22 80 81 93

eMail: cpazosm@biof.ufrj.br

    >