ABSTRACT
Tumor cells interfere with the normal programming of extracellular matrix (ECM) biosynthesis and can extensively modify the structure and composition of the matrix. The role of ECM components is becoming increasingly recognized as an important determinant for the growth and progression of solid tumors. The extensive remodeling of the normal ECM in tumors can proceed through the degradation of pre-existing ECM molecules and/or by the neosynthesis of ECM components, which in many cases are not present in the ECM of normal tissues. In the ovary the ECM comprises a variety of molecules including the collagen superfamily and noncollagenous proteins such as glycoproteins, proteoglycans, and hyaluronan. Elevated levels of laminin-γ2, collagen types I and III, fibronectin, syndecan-1, glypican-1, versican, and hyaluronan and its receptors CD44 have all been associated with a poor prognosis of ovarian cancers. Generally, there is a differential expression of laminin chains α1, α4, and β2 among serous (α1, β2), mucinous (α4), and endometrioid (α1) tumors. This review focuses on these and other ECM molecules in ovarian tumors.
KEYWORDS
Ovary - tumor - cancer - metastasis - extracellular matrix - basal lamina - laminin - collagen type IV - tenascin C - hyaluronan - CD44 - decorin - versican - glypican - perlecan - syndecan - fibulin-1
REFERENCES
1
Scully R E.
World Health Organization classification and nomenclature of ovarian cancer.
Natl Cancer Inst Monogr.
1975;
42
5-7
2 Scully R EY, R H, Clements P B. Tumors of the ovary, maldeveloped gonads, fallopian tube, and broad ligament . In: Fascile 22 Atlas of Tumor Pathology. Third series ed. Washington, DC; Armed Forces Institute of Pathology 1998
3 Johns Hopkins Pathology .Ovarian cancer. Diagnosis: types of tumors. Epithelial cancers. Available at: http://ovariancancer.jhmi.edu/malignantepithelial.cfm Accessed July 21, 2006
4
Kaku T, Ogawa S, Kawano Y et al..
Histological classification of ovarian cancer.
Med Electron Microsc.
2003;
36
9-17
5
International Federation of Gynecology and Obstetrics .
Changes in definitions of clinical staging for carcinoma of the cervix and ovary.
Am J Obstet Gynecol.
1987;
156
263-264
6
Sugiyama T, Kamura T, Kigawa J et al..
Clinical characteristics of clear cell carcinoma of the ovary: a distinct histologic type with poor prognosis and resistance to platinum-based chemotherapy.
Cancer.
2000;
88
2584-2589
7
Timpl R, Dziadek M.
Structure, development, and molecular pathology of basement membranes.
Int Rev Exp Pathol.
1986;
29
1-112
8
Hagios C, Lochter A, Bissell M J.
Tissue architecture: the ultimate regulator of epithelial function?.
Philos Trans R Soc Lond B Biol Sci.
1998;
353
857-870
9
Auersperg N, Wong A S, Choi K C, Kang S K, Leung P C.
Ovarian surface epithelium: biology, endocrinology, and pathology.
Endocr Rev.
2001;
22
255-288
10
Auersperg N, Maclaren I A, Kruk P A.
Ovarian surface epithelium: autonomous production of connective tissue-type extracellular matrix.
Biol Reprod.
1991;
44
717-724
11
Rodgers R J, Lavranos T C, van Wezel I L, Irving-Rodgers H F.
Development of the ovarian follicular epithelium.
Mol Cell Endocrinol.
1999;
151
171-179
12
Stenback F, Wasenius V M.
Basement membrane structures in tumors of the ovary.
Eur J Obstet Gynecol Reprod Biol.
1985;
20
357-371
13
Paulsson M.
Basement membrane proteins: structure, assembly, and cellular interactions.
Crit Rev Biochem Mol Biol.
1992;
27
93-127
14
Timpl R, Brown J C.
Supramolecular assembly of basement membranes.
Bioessays.
1996;
18
123-132
15
Yurchenco P D, Schittny J C.
Molecular architecture of basement membranes.
FASEB J.
1990;
4
1577-1590
16
Weber M.
Basement membrane proteins.
Kidney Int.
1992;
41
620-628
17 Hay E. Cell Biology of Extracellular Matrix. New York; Plenum Press 1991
18
Rodgers H F, Irvine C M, van Wezel I L et al..
Distribution of the alpha1 to alpha6 chains of type IV collagen in bovine follicles.
Biol Reprod.
1998;
59
1334-1341
19
Capo-Chichi C D, Smith E R, Yang D H et al..
Dynamic alterations of the extracellular environment of ovarian surface epithelial cells in premalignant transformation, tumorigenicity, and metastasis.
Cancer.
2002;
95
1802-1815
20
Yang D H, Smith E R, Cohen C et al..
Molecular events associated with dysplastic morphologic transformation and initiation of ovarian tumorigenicity.
Cancer.
2002;
94
2380-2392
21
Bar J K, Grelewski P, Popiela A, Noga L, Rabczynski J.
Type IV collagen and CD44v6 expression in benign, malignant primary and metastatic ovarian tumors: correlation with Ki-67 and p53 immunoreactivity.
Gynecol Oncol.
2004;
95
23-31
22
Aumailley M, Bruckner-Tuderman L, Carter W G et al..
A simplified laminin nomenclature.
Matrix Biol.
2005;
24
326-332
23
Byers L J, Osborne J L, Carson L F et al..
Increased levels of laminin in ascitic fluid of patients with ovarian cancer.
Cancer Lett.
1995;
88
67-72
24
Kohlberger P, Muller-Klingspor V, Heinzl H, Obermair A, Breitenecker G, Leodolter S.
Prognostic value of laminin-5 in serous adenocarcinomas of the ovary.
Anticancer Res.
2002;
22
3541-3544
25
Maatta M, Butzow R, Luostarinen J et al..
Differential expression of laminin isoforms in ovarian epithelial carcinomas suggesting different origin and providing tools for differential diagnosis.
J Histochem Cytochem.
2005;
53
1293-1300
26
Mizushima H, Koshikawa N, Moriyama K et al..
Wide distribution of laminin-5 gamma 2 chain in basement membranes of various human tissues.
Horm Res.
1998;
50(suppl 2)
7-14
27
Virtanen I, Gullberg D, Rissanen J et al..
Laminin alpha1-chain shows a restricted distribution in epithelial basement membranes of fetal and adult human tissues.
Exp Cell Res.
2000;
257
298-309
28
Zhu G G, Stenback F, Risteli L, Risteli J, Kauppila A.
Organization of type III collagen in benign and malignant ovarian tumors. An immunohistochemical study.
Cancer.
1993;
72
1679-1684
29
Wolanska M, Sobolewski K, Bankowski E, Drozdzewicz M.
Accumulation of collagen in ovarian benign tumours.
Acta Biochim Pol.
1999;
46
941-947
30
Kauppila S, Bode M K, Stenback F, Risteli L, Risteli J.
Cross-linked telopeptides of type I and III collagens in malignant ovarian tumours in vivo.
Br J Cancer.
1999;
81
654-661
31
Stenback F.
Collagen type III in ovarian tumors. Histological, immunohistochemical and ultrastructural findings.
Eur J Obstet Gynecol Reprod Biol.
1989;
30
73-88
32
Risteli L, Risteli J, Puistola U, Tomas C, Zhu G G, Kauppila A.
Aminoterminal propeptide of type III procollagen in ovarian cancer. A review.
Acta Obstet Gynecol Scand.
1992;
155(suppl)
99-103
33
Abdel Aziz M T, Abdel Aziz Wassef M, Kamel M, el Zein M, el Hassan H.
Clinical evaluation of serum aminoterminal propeptide of type III procollagen as tumor marker in gynecologic malignancies.
Tumori.
1993;
79
219-223
34
Zhu G G, Risteli J, Puistola U, Kauppila A, Risteli L.
Progressive ovarian carcinoma induces synthesis of type I and type III procollagens in the tumor tissue and peritoneal cavity.
Cancer Res.
1993;
53
5028-5032
35
Zhu G G, Risteli L, Makinen M, Risteli J, Kauppila A, Stenback F.
Immunohistochemical study of type I collagen and type I pN-collagen in benign and malignant ovarian neoplasms.
Cancer.
1995;
75
1010-1017
36
Kauppila S, Saarela J, Stenback F, Risteli J, Kauppila A, Risteli L.
Expression of mRNAs for type I and type III procollagens in serous ovarian cystadenomas and cystadenocarcinomas.
Am J Pathol.
1996;
148
539-548
37
Cracchiolo B M, Hanauske-Abel H M, Schwartz P E, Chambers J T, Holland B, Chambers S K.
Procollagen-derived biomarkers in malignant ascites of ovarian cancer. Independent prognosticators for progression-free interval and survival.
Gynecol Oncol.
2002;
87
24-33
38
Simojoki M, Santala M, Risteli J, Kauppila A.
Discrepant expression of carboxy- and aminoterminal propeptides of type I procollagen predicts poor clinical outcome in epithelial ovarian cancer.
Gynecol Oncol.
2003;
88
358-362
39
Santala M, Simojoki M, Risteli J, Risteli L, Kauppila A.
Type I and III collagen metabolites as predictors of clinical outcome in epithelial ovarian cancer.
Clin Cancer Res.
1999;
5
4091-4096
40
Simojoki M, Santala M, Risteli J, Risteli L, Kauppila A.
Serial determinations of aminoterminal propeptide of type III procollagen (PIIINP) and prognosis in ovarian cancer; comparison to CA125.
Anticancer Res.
2000;
20
4655-4660
41
Simojoki M, Santala M, Risteli J, Kauppila A.
Carboxyterminal telopeptide of type I collagen (ICTP) in predicting prognosis in epithelial ovarian cancer.
Gynecol Oncol.
2001;
82
110-115
42
Hassager C, Risteli J, Risteli L, Jensen S B, Christiansen C.
Diurnal variation in serum markers of type I collagen synthesis and degradation in healthy premenopausal women.
J Bone Miner Res.
1992;
7
1307-1311
43
Wolthers O D, Heuck C, Heickendorff L.
Diurnal variations in serum and urine markers of type I and type III collagen turnover in children.
Clin Chem.
2001;
47
1721-1722
44
Qvist P, Christgau S, Pedersen B J, Schlemmer A, Christiansen C.
Circadian variation in the serum concentration of C-terminal telopeptide of type I collagen (serum CTx): effects of gender, age, menopausal status, posture, daylight, serum cortisol, and fasting.
Bone.
2002;
31
57-61
45
Pfaff M, Aumailley M, Specks U, Knolle J, Zerwes H G, Timpl R.
Integrin and Arg-Gly-Asp dependence of cell adhesion to the native and unfolded triple helix of collagen type VI.
Exp Cell Res.
1993;
206
167-176
46
Sherman-Baust C A, Weeraratna A T, Rangel L B et al..
Remodeling of the extracellular matrix through overexpression of collagen VI contributes to cisplatin resistance in ovarian cancer cells.
Cancer Cell.
2003;
3
377-386
47
Varma R R, Hector S M, Clark K, Greco W R, Hawthorn L, Pendyala L.
Gene expression profiling of a clonal isolate of oxaliplatin-resistant ovarian carcinoma cell line A2780/C10.
Oncol Rep.
2005;
14
925-932
48
Wiberg C, Hedbom E, Khairullina A et al..
Biglycan and decorin bind close to the n-terminal region of the collagen VI triple helix.
J Biol Chem.
2001;
276
18947-18952
49
Dean D C, Birkenmeier T M, Rosen G D, Weintraub S J.
Glycoprotein synthesis and secretion. Expression of fibronectin and its cell surface receptors.
Am Rev Respir Dis.
1991;
144
S25-S28
50
Labat-Robert J.
Fibronectin in malignancy.
Semin Cancer Biol.
2002;
12
187-195
51 Barlati S, Columbi M, DePetro G. Differential expression of fibronectin and its degradation products in malignant tumors . In: Adony R Tumor Matrix Biology. Boca Raton; CRC Press 1995: 81-100
52
De Candia L M, Rodgers R J.
Characterization of the expression of the alternative splicing of the ED-A, ED-B and V regions of fibronectin mRNA in bovine ovarian follicles and corpora lutea.
Reprod Fertil Dev.
1999;
11
367-377
53
Wilhelm O, Hafter R, Coppenrath E et al..
Fibrin-fibronectin compounds in human ovarian tumor ascites and their possible relation to the tumor stroma.
Cancer Res.
1988;
48
3507-3514
54
Franke F E, Von Georgi R, Zygmunt M, Munstedt K.
Association between fibronectin expression and prognosis in ovarian carcinoma.
Anticancer Res.
2003;
23
4261-4267
55
Demeter A, Sziller I, Csapo Z et al..
Molecular prognostic markers in recurrent and in non-recurrent epithelial ovarian cancer.
Anticancer Res.
2005;
25
2885-2889
56
Kaspar M, Zardi L, Neri D.
Fibronectin as target for tumor therapy.
Int J Cancer.
2006;
118
1331-1339
57
Clinton G M, Rougeot C, Derancourt J et al..
Estrogens increase the expression of fibulin-1, an extracellular matrix protein secreted by human ovarian cancer cells.
Proc Natl Acad Sci USA.
1996;
93
316-320
58
Roger P, Pujol P, Lucas A, Baldet P, Rochefort H.
Increased immunostaining of fibulin-1, an estrogen-regulated protein in the stroma of human ovarian epithelial tumors.
Am J Pathol.
1998;
153
1579-1588
59
Moll F, Katsaros D, Lazennec G et al..
Estrogen induction and overexpression of fibulin-1C mRNA in ovarian cancer cells.
Oncogene.
2002;
21
1097-1107
60
Chiquet-Ehrismann R.
Tenascin and other adhesion-modulating proteins in cancer.
Semin Cancer Biol.
1993;
4
301-310
61
Mackie E J, Chiquet-Ehrismann R, Pearson C A et al..
Tenascin is a stromal marker for epithelial malignancy in the mammary gland.
Proc Natl Acad Sci USA.
1987;
84
4621-4625
62
Wilson K E, Langdon S P, Lessells A M, Miller W R.
Expression of the extracellular matrix protein tenascin in malignant and benign ovarian tumours.
Br J Cancer.
1996;
74
999-1004
63
Wilson K E, Bartlett J M, Miller E P et al..
Regulation and function of the extracellular matrix protein tenascin-C in ovarian cancer cell lines.
Br J Cancer.
1999;
80
685-692
64
Ishihara A, Yoshida T, Tamaki H, Sakakura T.
Tenascin expression in cancer cells and stroma of human breast cancer and its prognostic significance.
Clin Cancer Res.
1995;
1
1035-1041
65
Suwiwat S, Ricciardelli C, Tammi R et al..
Expression of extracellular matrix components versican, chondroitin sulfate, tenascin, and hyaluronan, and their association with disease outcome in node-negative breast cancer.
Clin Cancer Res.
2004;
10
2491-2498
66
Timar J, Lapis K, Dudas J, Sebestyen A, Kopper L, Kovalszky I.
Proteoglycans and tumor progression: Janus-faced molecules with contradictory functions in cancer.
Semin Cancer Biol.
2002;
12
173-186
67
Iozzo R V.
Matrix proteoglycans: from molecular design to cellular function.
Annu Rev Biochem.
1998;
67
609-652
68
Blackhall F H, Merry C L, Davies E J, Jayson G C.
Heparan sulfate proteoglycans and cancer.
Br J Cancer.
2001;
85
1094-1098
69
Beauvais D M, Rapraeger A C.
Syndecans in tumor cell adhesion and signaling.
Reprod Biol Endocrinol.
2004;
2
3
70
Iozzo R V.
Perlecan: a gem of a proteoglycan.
Matrix Biol.
1994;
14
203-208
71
McArthur M E, Irving-Rodgers H F, Byers S, Rodgers R J.
Identification and immunolocalization of decorin, versican, perlecan, nidogen, and chondroitin sulfate proteoglycans in bovine small-antral ovarian follicles.
Biol Reprod.
2000;
63
913-924
72
Irving-Rodgers H F, Harland M L, Rodgers R J.
A novel basal lamina matrix of the stratified epithelium of the ovarian follicle.
Matrix Biol.
2004;
23
207-217
73
Davies E J, Blackhall F H, Shanks J H et al..
Distribution and clinical significance of heparan sulfate proteoglycans in ovarian cancer.
Clin Cancer Res.
2004;
10
5178-5186
74
Ishiguro K, Kojima T, Taguchi O, Saito H, Muramatsu T, Kadomatsu K.
Syndecan-4 expression is associated with follicular atresia in mouse ovary.
Histochem Cell Biol.
1999;
112
25-33
75
Oksjoki S, Sallinen S, Vuorio E, Anttila L.
Cyclic expression of mRNA transcripts for connective tissue components in the mouse ovary.
Mol Hum Reprod.
1999;
5
803-808
76
Princivalle M, Hasan S, Hosseini G, de Agostini A I.
Anticoagulant heparan sulfate proteoglycans expression in the rat ovary peaks in preovulatory granulosa cells.
Glycobiology.
2001;
11
183-194
77
Kokenyesi R.
Ovarian carcinoma cells synthesize both chondroitin sulfate and heparan sulfate cell surface proteoglycans that mediate cell adhesion to interstitial matrix.
J Cell Biochem.
2001;
83
259-270
78
Casey R C, Oegema Jr T R, Skubitz K M, Pambuccian S E, Grindle S M, Skubitz A P.
Cell membrane glycosylation mediates the adhesion, migration, and invasion of ovarian carcinoma cells.
Clin Exp Metastasis.
2003;
20
143-152
79
Wiksten J P, Lundin J, Nordling S et al..
Epithelial and stromal syndecan-1 expression as predictor of outcome in patients with gastric cancer.
Int J Cancer.
2001;
95
1-6
80
Barbareschi M, Maisonneuve P, Aldovini D et al..
High syndecan-1 expression in breast carcinoma is related to an aggressive phenotype and to poorer prognosis.
Cancer.
2003;
98
474-483
81
Tsanou E, Ioachim E, Briasoulis E et al..
Clinicopathological study of the expression of syndecan-1 in invasive breast carcinomas. Correlation with extracellular matrix components.
J Exp Clin Cancer Res.
2004;
23
641-650
82
Maeda T, Desouky J, Friedl A.
Syndecan-1 expression by stromal fibroblasts promotes breast carcinoma growth in vivo and stimulates tumor angiogenesis.
Oncogene.
2006;
25
1408-1412
83
Filmus J.
Glypicans in growth control and cancer.
Glycobiology.
2001;
11
19R-23R
84
Veugelers M, Vermeesch J, Reekmans G, Steinfeld R, Marynen P, David G.
Characterization of glypican-5 and chromosomal localization of human GPC5, a new member of the glypican gene family.
Genomics.
1997;
40
24-30
85
Veugelers M, De Cat B, Ceulemans H et al..
Glypican-6, a new member of the glypican family of cell surface heparan sulfate proteoglycans.
J Biol Chem.
1999;
274
26968-26977
86
LeBaron R G.
Versican.
Perspect Dev Neurobiol.
1996;
3
261-271
87
LeBaron R G, Zimmermann D R, Ruoslahti E.
Hyaluronate binding properties of versican.
J Biol Chem.
1992;
267
10003-10010
88
Bode-Lesniewska B, Dours-Zimmermann M T, Odermatt B F, Briner J, Heitz P U, Zimmermann D R.
Distribution of the large aggregating proteoglycan versican in adult human tissues.
J Histochem Cytochem.
1996;
44
303-312
89
Russell D L, Doyle K M, Ochsner S A, Sandy J D, Richards J S.
Processing and localization of ADAMTS-1 and proteolytic cleavage of versican during cumulus matrix expansion and ovulation.
J Biol Chem.
2003;
278
42330-42339
90
Voutilainen K, Anttila M, Sillanpaa S et al..
Versican in epithelial ovarian cancer: relation to hyaluronan, clinicopathologic factors and prognosis.
Int J Cancer.
2003;
107
359-364
91
Wight T N.
Versican: a versatile extracellular matrix proteoglycan in cell biology.
Curr Opin Cell Biol.
2002;
14
617-623
92
Weber I T, Harrison R W, Iozzo R V.
Model structure of decorin and implications for collagen fibrillogenesis.
J Biol Chem.
1996;
271
31767-31770
93
Adany R, Heimer R, Caterson B, Sorrell J M, Iozzo R V.
Altered expression of chondroitin sulfate proteoglycan in the stroma of human colon carcinoma. Hypomethylation of PG-40 gene correlates with increased PG-40 content and mRNA levels.
J Biol Chem.
1990;
265
11389-11396
94
Ricciardelli C, Mayne K, Sykes P J et al..
Elevated levels of versican but not decorin predict disease progression in early-stage prostate cancer.
Clin Cancer Res.
1998;
4
963-971
95
Brown L F, Guidi A J, Schnitt S J et al..
Vascular stroma formation in carcinoma in situ, invasive carcinoma, and metastatic carcinoma of the breast.
Clin Cancer Res.
1999;
5
1041-1056
96
Nash M A, Deavers M T, Freedman R S.
The expression of decorin in human ovarian tumors.
Clin Cancer Res.
2002;
8
1754-1760
97
Nash M A, Loercher A E, Freedman R S.
In vitro growth inhibition of ovarian cancer cells by decorin: synergism of action between decorin and carboplatin.
Cancer Res.
1999;
59
6192-6196
98
Santra M, Eichstetter I, Iozzo R V.
An anti-oncogenic role for decorin. Down-regulation of ErbB2 leads to growth suppression and cytodifferentiation of mammary carcinoma cells.
J Biol Chem.
2000;
275
35153-35161
99
Merle B, Durussel L, Delmas P D, Clezardin P.
Decorin inhibits cell migration through a process requiring its glycosaminoglycan side chain.
J Cell Biochem.
1999;
75
538-546
100
Shridhar V, Sen A, Chien J et al..
Identification of underexpressed genes in early- and late-stage primary ovarian tumors by suppression subtraction hybridization.
Cancer Res.
2002;
62
262-270
101
Shridhar V, Lee J, Pandita A et al..
Genetic analysis of early- versus late-stage ovarian tumors.
Cancer Res.
2001;
61
5895-5904
102
Reed C C, Waterhouse A, Kirby S et al..
Decorin prevents metastatic spreading of breast cancer.
Oncogene.
2005;
24
1104-1110
103
Knudson C B, Knudson W.
Hyaluronan-binding proteins in development, tissue homeostasis, and disease.
FASEB J.
1993;
7
1233-1241
104
Prehm P.
Release of hyaluronate from eukaryotic cells.
Biochem J.
1990;
267
185-189
105
Spicer A P, McDonald J A.
Characterization and molecular evolution of a vertebrate hyaluronan synthase gene family.
J Biol Chem.
1998;
273
1923-1932
106
Day A J, Prestwich G D.
Hyaluronan-binding proteins: tying up the giant.
J Biol Chem.
2002;
277
4585-4588
107
Salustri A, Yanagishita M, Underhill C B, Laurent T C, Hascall V C.
Localization and synthesis of hyaluronic acid in the cumulus cells and mural granulosa cells of the preovulatory follicle.
Dev Biol.
1992;
151
541-551
108
Fulop C, Salustri A, Hascall V C.
Coding sequence of a hyaluronan synthase homologue expressed during expansion of the mouse cumulus-oocyte complex.
Arch Biochem Biophys.
1997;
337
261-266
109
Rodgers R J, Irving-Rodgers H F, Russell D L.
Extracellular matrix of the developing ovarian follicle.
Reproduction.
2003;
126
415-424
110
Schoenfelder M, Einspanier R.
Expression of hyaluronan synthases and corresponding hyaluronan receptors is differentially regulated during oocyte maturation in cattle.
Biol Reprod.
2003;
69
269-277
111
Ulbrich S E, Schoenfelder M, Thoene S, Einspanier R.
Hyaluronan in the bovine oviduct-modulation of synthases and receptors during the estrous cycle.
Mol Cell Endocrinol.
2004;
214
9-18
112
Tammi M I, Day A J, Turley E A.
Hyaluronan and homeostasis: a balancing act.
J Biol Chem.
2002;
277
4581-4584
113
Boregowda R K, Appaiah H N, Siddaiah M et al..
Expression of Hyaluronan in human tumor progression.
J Carcinog.
2006;
5
2
114
Anttila M A, Tammi R H, Tammi M I, Syrjanen K J, Saarikoski S V, Kosma V M.
High levels of stromal hyaluronan predict poor disease outcome in epithelial ovarian cancer.
Cancer Res.
2000;
60
150-155
115
Hiltunen E L, Anttila M, Kultti A et al..
Elevated hyaluronan concentration without hyaluronidase activation in malignant epithelial ovarian tumors.
Cancer Res.
2002;
62
6410-6413
116
Jojovic M, Delpech B, Prehm P, Schumacher U.
Expression of hyaluronate and hyaluronate synthase in human primary tumours and their metastases in scid mice.
Cancer Lett.
2002;
188
181-189
117
Yabushita H, Noguchi M, Kishida T et al..
Hyaluronan synthase expression in ovarian cancer.
Oncol Rep.
2004;
12
739-743
118
Casey R C, Skubitz A P.
CD44 and beta1 integrins mediate ovarian carcinoma cell migration toward extracellular matrix proteins.
Clin Exp Metastasis.
2000;
18
67-75
119
Lessan K, Aguiar D J, Oegema T, Siebenson L, Skubitz A P.
CD44 and beta1 integrin mediate ovarian carcinoma cell adhesion to peritoneal mesothelial cells.
Am J Pathol.
1999;
154
1525-1537
120
Strobel T, Swanson L, Cannistra S A.
In vivo inhibition of CD44 limits intra-abdominal spread of a human ovarian cancer xenograft in nude mice: a novel role for CD44 in the process of peritoneal implantation.
Cancer Res.
1997;
57
1228-1232
121
Gardner M J, Catterall J B, Jones L M, Turner G A.
Human ovarian tumour cells can bind hyaluronic acid via membrane CD44: a possible step in peritoneal metastasis.
Clin Exp Metastasis.
1996;
14
325-334
122
Yeo T K, Nagy J A, Yeo K T, Dvorak H F, Toole B P.
Increased hyaluronan at sites of attachment to mesentery by CD44-positive mouse ovarian and breast tumor cells.
Am J Pathol.
1996;
148
1733-1740
123
Catterall J B, Gardner M J, Jones L M, Turner G A.
Binding of ovarian cancer cells to immobilized hyaluronic acid.
Glycoconj J.
1997;
14
867-869
124
Bourguignon L Y, Gilad E, Rothman K, Peyrollier K.
Hyaluronan-CD44 interaction with IQGAP1 promotes Cdc42 and ERK signaling, leading to actin binding, Elk-1/estrogen receptor transcriptional activation, and ovarian cancer progression.
J Biol Chem.
2005;
280
11961-11972
125
Bourguignon L Y, Zhu H, Zhou B, Diedrich F, Singleton P A, Hung M C.
Hyaluronan promotes CD44v3-Vav2 interaction with Grb2-p185(HER2) and induces Rac1 and Ras signaling during ovarian tumor cell migration and growth.
J Biol Chem.
2001;
276
48679-48692
126
Bourguignon L Y, Zhu H, Shao L, Chen Y W.
CD44 interaction with c-Src kinase promotes cortactin-mediated cytoskeleton function and hyaluronic acid-dependent ovarian tumor cell migration.
J Biol Chem.
2001;
276
7327-7336
127
Uhl-Steidl M, Muller-Holzner E, Zeimet A G et al..
Prognostic value of CD44 splice variant expression in ovarian cancer.
Oncology.
1995;
52
400-406
128
Kayastha S, Freedman A N, Piver M S, Mukkamalla J, Romero-Guittierez M, Werness B A.
Expression of the hyaluronan receptor, CD44S, in epithelial ovarian cancer is an independent predictor of survival.
Clin Cancer Res.
1999;
5
1073-1076
129
Afify A M, Ferguson A W, Davila R M, Werness B A.
Expression of CD44S and CD44v5 is more common in stage III than in stage I serous ovarian carcinomas.
Appl Immunohistochem Mol Morphol.
2001;
9
309-314
130
Ross J S, Sheehan C E, Williams S S, Malfetano J H, Szyfelbein W M, Kallakury B V.
Decreased CD44 standard form expression correlates with prognostic variables in ovarian carcinomas.
Am J Clin Pathol.
2001;
116
122-128
131
Rodriguez-Rodriguez L, Sancho-Torres I, Mesonero C, Gibbon D G, Shih W J, Zotalis G.
The CD44 receptor is a molecular predictor of survival in ovarian cancer.
Med Oncol.
2003;
20
255-263
132
Cannistra S A, Abu-Jawdeh G, Niloff J et al..
CD44 variant expression is a common feature of epithelial ovarian cancer: lack of association with standard prognostic factors.
J Clin Oncol.
1995;
13
1912-1921
133
Speiser P, Wanner C, Breitenecker G, Kohlberger P, Kainz C.
CD-44 is not involved in the metastatic spread of ovarian cancer in vivo.
Anticancer Res.
1995;
15
2767-2769
134
Sanchez Lockhart M, Hajos S E, Basilio F M, Mongini C, Alvarez E.
Splice variant expression of CD44 in patients with breast and ovarian cancer.
Oncol Rep.
2001;
8
145-151
135
Sillanpaa S, Anttila M A, Voutilainen K et al..
CD44 expression indicates favorable prognosis in epithelial ovarian cancer.
Clin Cancer Res.
2003;
9
5318-5324
Dr. Carmela Ricciardelli
Research Centre for Reproductive Health, Discipline of Obstetrics and Gynaecology, School of Paediatrics and Reproductive Health
University of Adelaide, Adelaide, South Australia 5005, Australia
Email: carmela.ricciardelli@adelaide.edu.au