Abstract
Plants and microorganisms are the most important sources of secondary metabolites
in nature. For research in the functional genomics of secondary metabolism, and for
the biotechnological application of such research by genetic engineering and combinatorial
biosynthesis, most microorganisms offer a unique advantage to the researcher: the
biosynthetic genes for a specific secondary metabolite are not scattered over the
genome, but rather are clustered in a well-defined, contiguous region - the biosynthetic
gene cluster of that metabolite. This is exemplified in this review for the biosynthetic
gene clusters of the aminocoumarin antibiotics novobiocin, clorobiocin and coumermycin
A1, which are potent inhibitors of DNA gyrase. Cloning, sequencing and analysis of the
biosynthetic gene clusters of these three antibiotics revealed that the structural
differences and similarities of the compounds are perfectly reflected by the genetic
organisation of the biosynthetic gene clusters. The function of most biosynthetic
genes could be identified by gene inactivation experiments as well as by heterologous
expression and biochemical investigation. The prenylated benzoic acid moiety of novobiocin
and clorobiocin, involved in the interaction with gyrase, is structurally similar
to metabolites found in plants. However, detailed investigations of the biosynthesis
revealed that the biosynthetic pathway and the enzymes involved are totally different
from those identified in plants.
Key words
Antibiotics - aminocoumarins - biosynthesis - gene clusters - gyrase inhibitors -
Streptomyces
References
- 1
Maxwell A, Lawson D M.
The ATP-binding site of type II topoisomerases as a target for antibacterial drugs.
Curr Top Med Chem.
2003;
3
283-303
- 2
Steffensky M, Mühlenweg A, Wang Z -X, Li S -M, Heide L.
Identification of the novobiocin biosynthetic gene cluster of Streptomyces spheroides NCIB 11 891.
Antimicrob Agents Chemother.
2000;
44
1214-22
- 3
Wang Z -X, Li S -M, Heide L.
Identification of the coumermycin A1 biosynthetic gene cluster of Streptomyces rishiriensis DSM 40 489.
Antimicrob Agents Chemother.
2000;
44
3040-8
- 4
Pojer F, Li S -M, Heide L.
Molecular cloning and sequence analysis of the clorobiocin biosynthetic gene cluster:
new insights into the biosynthesis of aminocoumarin antibiotics.
Microbiology.
2002;
148
3901-11
- 5
Bunton C A, Kenner G W, Robinson M JT, Webster B R.
Experiments related to the biosynthesis of novobiocin and other coumarins.
Tetrahedron.
1963;
19
1001-10
- 6
Chen H, Walsh C T.
Coumarin formation in novobiocin biosynthesis: β-hydroxylation of the aminoacyl enzyme tyrosyl-S-NovH by a cytochrome P450 NovI.
Chem Biol.
2001;
8
301-12
- 7
Pacholec M, Hillson N J, Walsh C T.
NovJ/NovK catalyze benzylic oxidation of a β-hydroxyl tyrosyl-S-pantetheinyl enzyme during aminocoumarin ring formation in novobiocin
biosynthesis.
Biochemistry.
2005;
44
12 819-26
- 8
Holzenkämpfer M, Zeeck A.
Biosynthesis of simocyclinone D8 in an 18O2-rich atmosphere.
J Antibiot.
2002;
55
341-2
- 9
Eustáquio A S, Gust B, Luft T, Li S -M, Chater K F, Heide L.
Clorobiocin biosynthesis in Streptomyces. Identification of the halogenase and generation of structural analogs.
Chem Biol.
2003;
10
279-88
- 10
Pacholec M, Tao J, Walsh C T.
CouO and NovO: C-methyltransferases for tailoring the aminocoumarin scaffold in coumermycin and novobiocin
antibiotic biosynthesis.
Biochemistry.
2005;
44
14 969-76
- 11
Mühlenweg A, Melzer M, Li S -M, Heide L.
4-Hydroxybenzoate 3-geranyltransferase from Lithospermum erythrorhizon: purification of a plant membrane-bound prenyltransferase.
Planta.
1998;
205
407-13
- 12
Löscher R, Heide L.
Biosynthesis of p-hydroxybenzoate from p-coumarate and p-coumaroyl-coenzyme A in cell-free extracts of Lithospermum erythrorhizon cell cultures.
Plant Physiol.
1994;
106
271-9
- 13
Melzer M, Heide L.
Characterization of polyprenyldiphosphate: 4-hydroxybenzoate polyprenyltransferase
from Escherichia coli
.
Biochim Biophys Acta.
1994;
1212
93-102
- 14
Pojer F, Wemakor E, Kammerer B, Chen H, Walsh C T, Li S -M. et al .
CloQ, a prenyltransferase involved in clorobiocin biosynthesis.
Proc Natl Acad Sci USA.
2003;
100
2316-21
- 15
Kuzuyama T, Noel J P, Richard S B.
Structural basis for the promiscuous biosynthetic prenylation of aromatic natural
products.
Nature.
2005;
435
983-7
- 16
Kawasaki T, Hayashi Y, Kuzuyama T, Furihata K, Itoh N, Seto H. et al .
Biosynthesis of a natural polyketide-isoprenoid hybrid compound, furaquinocin A: identification
and heterologous expression of the gene cluster.
J Bacteriol.
2006;
188
1236-44
- 17
Pojer F, Kahlich R, Kammerer B, Li S -M, Heide L.
CloR, a bifunctional non-heme iron oxygenase involved in clorobiocin biosynthesis.
J Biol Chem.
2003;
278
30 661-8
- 18
Li S -M, Hennig S, Heide L.
Biosynthesis of the dimethylallyl moiety of novobiocin via a non-mevalonate pathway.
Tetrahedron Lett.
1998;
39
2717-20
- 19
Xu H, Wang Z X, Schmidt J, Heide L, Li S -M.
Genetic analysis of the biosynthesis of the pyrrole and carbamoyl moieties of coumermycin
A1 and novobiocin.
Mol Genet Genomics.
2002;
268
387-96
- 20
Thomas M G, Burkart M D, Walsh C T.
Conversion of L-proline to pyrrolyl-2-carboxyl-S-PCP during undecylprodigiosin and
pyoluteorin biosynthesis.
Chem Biol.
2002;
9
171-84
- 21
Thuy T TT, Lee H C, Kim C G, Heide L, Sohng J K.
Functional characterizations of novWUS involved in novobiocin biosynthesis from Streptomyces spheroides
.
Arch Biochem Biophys.
2005;
436
161-7
- 22
Jakimowicz P, Tello M, Meyers C L, Walsh C T, Buttner M J, Field R A. et al .
The 1.6-Å resolution crystal structure of NovW: a 4-keto-6-deoxy sugar epimerase from
the novobiocin biosynthetic gene cluster of Streptomyces spheroides
.
Proteins.
2006;
63
261-5
- 23
Freitag A, Li S -M, Heide L.
Biosynthesis of the unusual 5,5-gem-dimethyl-deoxysugar noviose: investigation of the C-methyltransferase gene cloU
.
Microbiology.
2006;
152
2433-42
- 24
Steffensky M, Li S -M, Heide L.
Cloning, overexpression, and purification of novobiocic acid synthetase from Streptomyces spheroides NCIMB 11 891.
J Biol Chem.
2000;
275
21 754-60
- 25
Galm U, Dessoy M A, Schmidt J, Wessjohann L A, Heide L.
In vitro and in vivo production of new aminocoumarins by a combined biochemical, genetic and synthetic
approach.
Chem Biol.
2004;
11
173-83
- 26
Schmutz E, Steffensky M, Schmidt J, Porzel A, Li S -M, Heide L.
An unusual amide synthetase (CouL) from the coumermycin A1 biosynthetic gene cluster
from Streptomyces rishiriensis DSM 40 489.
Eur J Biochem.
2003;
270
4413-9
- 27
Freel Meyers C L, Oberthur M, Anderson J W, Kahne D, Walsh C T.
Initial characterization of novobiocic acid noviosyl transferase activity of NovM
in biosynthesis of the antibiotic novobiocin.
Biochemistry.
2003;
42
4179-89
- 28
Albermann C, Soriano A, Jiang J, Vollmer H, Biggins J B, Barton W A. et al .
Substrate specificity of NovM: Implications for novobiocin biosynthesis and glycorandomization.
Org Lett.
2003;
5
933-6
- 29
Freel Meyers C L, Oberthuer M, Xu H, Heide L, Kahne D, Walsh C T.
Characterization of NovP and NovN: Completion of novobiocin biosynthesis by sequential
tailoring of the noviosyl ring.
Angew Chem Int Ed Engl.
2004;
43
67-70
- 30
Xu H, Heide L, Li S -M.
New aminocoumarin antibiotics formed by a combined mutational and chemoenzymatic approach
utilizing the carbamoyltransferase NovN.
Chem Biol.
2004;
11
655-62
- 31
Freitag A, Wemakor E, Li S -M, Heide L.
Acyl transfer in clorobiocin biosynthesis: Involvement of several proteins in the
transfer of the pyrrole-2-carboxyl moiety to the deoxysugar.
Chembiochem.
2005;
6
2316-25
- 32
Freitag A, Rapp H, Heide L, Li S -M.
Metabolic engineering of aminocoumarins: Inactivation of the methyltransferase gene
cloP and generation of new clorobiocin derivatives in a heterologous host.
Chembiochem.
2005;
6
1411-8
- 33
Westrich L, Heide L, Li S -M.
CloN6, a novel methyltransferase catalysing the methylation of the pyrrole-2-carboxyl
moiety of clorobiocin.
Chembiochem.
2003;
4
768-73
- 34
Sofia H J, Chen G, Hetzler B G, Reyes-Spindola J F, Miller N E.
Radical SAM, a novel protein superfamily linking unresolved steps in familiar biosynthetic
pathways with radical mechanisms: functional characterization using new analysis and
information visualization methods.
Nucleic Acids Res.
2001;
29
1097-106
- 35
Schmutz E, Mühlenweg A, Li S -M, Heide L.
Resistance genes of aminocoumarin producers: Two type II topoisomerase genes confer
resistance against coumermycin A1 and clorobiocin.
Antimicrob Agents Chemother.
2003;
47
869-77
- 36
Schmutz E, Hennig S, Li S -M, Heide L.
Identification of a topoisomerase IV in actinobacteria: purification and characterization
of ParYR and GyrBR from the coumermycin A1 producer Streptomyces rishiriensis DSM 40 489.
Microbiology.
2004;
150
641-7
- 37
Eustáquio A S, Li S -M, Heide L.
NovG, a DNA-binding protein acting as a positive regulator of novobiocin biosynthesis.
Microbiology.
2005;
151
1949-61
- 38
Peschke U, Schmidt H, Zhang H Z, Piepersberg W.
Molecular characterization of the lincomycin-production gene cluster of Streptomyces lincolnensis 78 - 11.
Mol Microbiol.
1995;
16
1137-56
- 39
Eustáquio A S, Luft T, Wang Z -X, Gust B, Chater K F, Li S -M. et al .
Novobiocin biosynthesis: inactivation of the putative regulatory gene novE and heterologous expression of genes involved in aminocoumarin ring formation.
Arch Microbiol.
2003;
180
25-32
- 40
Eustáquio A S, Gust B, Galm U, Li S -M, Chater K F, Heide L.
Heterologous expression of novobiocin and clorobiocin biosynthetic gene clusters.
Appl Environ Microbiol.
2005;
71
2452-9
- 41
Li S -M, Heide L.
New aminocoumarin antibiotics from genetically engineered Streptomyces strains.
Curr Med Chem.
2005;
12
419-27
Prof. Dr. Lutz Heide
Pharmazeutische Biologie
Pharmazeutisches Institut
Eberhard-Karls-Universität Tübingen
Auf der Morgenstelle 8
72076 Tübingen
Germany
Phone: +49-7071-297-8789
Fax: +49-7071-295-250
Email: heide@uni-tuebingen.de