Laryngorhinootologie 2007; 86(2): 102-106
DOI: 10.1055/s-2006-944746
Originalien

© Georg Thieme Verlag KG Stuttgart · New York

Hinweise für ein zusätzliches Gen für das LAV-Syndrom

Evidence of a Novel Gene for the LAV-SyndromeR.  Birkenhäger1 , A.  J.  Zimmer1 , W.  Maier1 , T.  Klenzner1 , A.  Aschendorff1 , J.  Schipper1
  • 1Universitätsklinik für Hals-, Nasen- und Ohrenheilkunde und Poliklinik, Universitätsklinikum Freiburg (ärztlicher Direktor: Professor Dr. med. Dr. h. c. R. Laszig)
Further Information

Publication History

eingereicht 2. Juni 2005

akzeptiert 13. April 2006

Publication Date:
27 November 2006 (online)

Zusammenfassung

Hintergrund: Das LAV (Large bzw. Enlarged Aquaeductus Vestibularis)- und Pendred-Syndrom sind autosomal rezessiv vererbte Erkrankungen. Das LAV-Syndrom ist im Gegensatz zum Pendred-Syndrom ausschließlich durch einen bilateralen erweiterten Aquaeductus vestibularis charakterisiert. Das Pendred-Syndrom ist eine komplexe Erkrankung. Neben einer sensorineuralen Schwerhörigkeit tritt auch eine Schilddrüsenfunktionsstörung auf. Bisher wurden nur Mutationen im SLC26A4-Gen für beide Syndrome verantwortlich gemacht. Dieses wurde durch Kopplungsanalyse auf Chromosom 7q31 kartiert. Das Genprodukt (Pendrin) wird im Innenohr, in der Schilddrüse, Niere und Placenta exprimiert. Funktionelle Untersuchungen nach Expression von Pendrin in Xenopus laevis Oozyten zeigten, dass es sich bei diesem Protein um einen Jodid/Chlorid- bzw. Jodid/Format-Transporter handelt. Methode: Der Nachweis von Mutationen erfolgte durch direkte Sequenzierung der kodierenden Exone einschließlich der Intronübergänge. Eine Haplotypenanalyse erfolgte mittels polymorpher Mikrosatellitenmarker, die einen genomischen Bereich von 5 Mbp um den Genort für das SLC26A4-Gen abdecken. Ergebnisse: Bei der Sequenzanalyse von 42 Patienten mit einem bilateralen erweiterten Aquaeductus Vestibularis konnte in 30 % der Fälle keine Mutation im Gen SLC26A4 nachgewiesen werden. Im Einzelfall konnte gezeigt werden, dass keine Kopplung an dem Genort auf Chromosom 7q31 vorliegt. Schlussfolgerung: Die hier vorgestellten Ergebnisse deuten daraufhin, dass zumindest noch ein weiteres Gen an der Ausbildung des Enlarged Vestibular Aqueduct Syndroms beteiligt ist.

Abstract

Background: Both LAV- (large or enlarged vestibular aqueduct) and Pendred-syndrome are autosomal recessive diseases. In contrast to Pendred-syndrome, LAV-syndrome is characterised only by an enlarged vestibular aqueduct. Pendred-syndrome is a more complex disease. Classically it is characterised by sensorineural hearing loss and enlargement of the thyroid gland. Up to now, only mutations in SLC26A4 gene are known as being responsible for both syndromes. The gene for Pendred-syndrome (SLC26A4) has been localised by linkage analysis of chromosome 7q31. This protein is expressed in the inner ear, thyroid gland, kidney, and placenta. Functional analysis of the gene product (pendrin) in Xenopus laevis oocytes revealed that pendrin acts as an iodide/chloride and chloride/formate exchanger. Method: Each of the exons and flanking splice regions of the SLC26A4 gene were analysed by direct sequencing. Haplotype analysis was undertaken with microsatellite markers spanning a 5 Mbp area around the localisation of the SLC26A4 gene. Results: In sequence analysis of 42 patients with bilateral enlargement of the vestibular aqueduct, no mutation could be identified in 30 % of cases. In some of these cases, a linkage to the gene localisation on chromosome 7q31 could not be detected. Conclusion: Our results indicate evidence for a second gene involved in the development of LAV-syndrome.

Literatur

  • 1 Everett L A, Glaser B, Beck J C, Idol J R, Buchs A, Heyman M, Adawi F, Hazani E, Nassir E, Baxevanis A D, Sheffield V C, Green E D. Pendred syndrome is caused by mutations in a putative sulphate transporter gene (PDS).  Nat Genet. 1997;  17 411-422
  • 2 Phelps P D, Coffey R A, Trembath R C, Luxon L M, Grossman A B, Britton K E, Kendall-Taylor P, Graham J M, Cadge B C, Stephens S G, Pembrey M E, Reardon W. Radiological malformations of the ear in Pendred syndrome.  Clin Radiol. 1998;  53 268-273
  • 3 Reardon W, Coffey R, Phelps P D, Luxon L M, Stephens D, Kendall-Taylor P, Britton K E, Grossman A, Trembath R. Pendred syndrome - 100 years of underascertainment?.  QJM. 1997;  90 443-447
  • 4 Reardon W, Coffey R, Chowdhury T, Grossman A, Jan H, Britton K, Kendall-Taylor P, Trembath R. Prevalence, age of onset, and natural history of thyroid disease in Pendred syndrome.  J Med Genet. 1999;  36 595-598
  • 5 Abe S, Usami S, Hoover D M, Cohn E, Shinkawa H, Kimberling W J. Fluctuating sensorineural hearing loss associated with enlarged vestibular aqueduct maps to 7q31, the region containing the Pendred gene.  Am J Med Genet. 1999;  82 322-328
  • 6 Scott D A, Wang R, Kreman T M, Sheffield V C, Karniski L P. The Pendred syndrome gene encodes a chloride-iodide transport protein.  Nat Genet. 1999;  21 440-443
  • 7 Scott D A, Karniski L P. Human pendrin expressed in Xenopus laevis oocytes mediates chloride/formate exchange.  Am J Physiol Cell Physiol. 2000;  278 C207-C211
  • 8 Pendred Syndrome Homepage 2003 .. http://http://www.medicine.uiowa.edu/pendredandbor/
  • 9 Birkenhäger R, Knapp F B, Klenzner T, Aschendorff A, Schipper J. Identification of two heterozygous mutations in the SLC26A4/PDS gene in a family with Pendred-syndrome.  Laryngorhinootologie. 2004;  83 831-835
  • 10 Birkenhäger R, Otto E, Schurmann M J, Vollmer M, Ruf E M, Maier-Lutz I, Beekmann F, Fekete A, Omran H, Feldmann D, Milford D V, Jeck N, Konrad M, Landau D, Knoers N V, Antignac C, Sudbrak R, Kispert A, Hildebrandt F. Mutation of BSND causes Bartter syndrome with sensorineural deafness and kidney failure.  Nat Genet. 2001;  29 310-314
  • 11 Everett L A, Morsli H, Wu D K, Green E D. Expression pattern of the mouse ortholog of the Pendred's syndrome gene (Pds) suggests a key role for pendrin in the inner ear.  Proc Natl Acad Sci USA. 1999;  96 9727-9732
  • 12 Royaux I E, Wall S M, Karniski L P, Everett L A, Suzuki K, Knepper M A, Green E D. Pendrin, encoded by the Pendred syndrome gene, resides in the apical region of renal intercalated cells and mediates bicarbonate secretion.  Proc Natl Acad Sci USA. 2001;  98 4221-4226
  • 13 Soleimani M, Greeley T, Petrovic S, Wang Z, Amlal H, Kopp P, Burnham C E. Pendrin: an apical Cl-/OH-/HCO3-exchanger in the kidney cortex.  Am J Physiol Renal Physiol. 2001;  280 F356-F364
  • 14 Royaux I E, Wall S M, Karniski L P, Everett L A, Suzuki K, Knepper M A, Green E D. Pendrin, encoded by the Pendred syndrome gene, resides in the apical region of renal intercalated cells and mediates bicarbonate secretion.  Proc Natl Acad Sci USA. 2001;  98 4221-4226
  • 15 Bidart J M, Mian C, Lazar V, Russo D, Filetti S, Caillou B, Schlumberger M. Expression of pendrin and the Pendred syndrome (PDS) gene in human thyroid tissues.  J Clin Endocrinol Metab. 2000;  85 2028-2033
  • 16 Suzuki K, Royaux I E, Everett L A, Mori-Aoki A, Suzuki S, Nakamura K, Sakai T, Katoh R, Toda S, Green E D, Kohn L D. Expression of PDS/Pds, the Pendred syndrome gene, in endometrium.  J Clin Endocrinol Metab. 2002;  87 938
  • 17 Chen A, Francis M, Ni L, Cremers C W, Kimberling W J, Sato Y, Phelps P D, Bellman S C, Wagner M J, Pembrey M, Smith R JH. Phenotypic manifestations of branchio-oto-renal syndrome.  Am J Med Genet. 1995;  58 365-370
  • 18 Bauer P W, Wippold 2nd  F J, Goldin J, Lusk R P. Cochlear implantation in children with CHARGE association.  Arch Otolaryngol Head Neck Surg. 2002;  128 1013-1017
  • 19 Madden C, Halsted M J, Hopkin R J, Choo D I, Benton C, Greinwald Jr J H. Temporal bone abnormalities associated with hearing loss in Waardenburg syndrome.  Laryngoscope. 2003;  113 2035-2041
  • 20 Berrettini S, Neri E, Forli F, Panconi M, Massimetti M, Ravecca F, Sellari-Franceschini S, Bartolozzi C. Large vestibular aqueduct in distal renal tubular acidosis. High-resolution MR in three cases.  Acta Radiol. 2001;  42 320-322
  • 21 Griffith A J, Arts A, Downs C, Innis J W, Shepard N T, Sheldon S, Gebarski S S. Familial large vestibular aqueduct syndrome.  Laryngoscope. 1996;  106 960-965
  • 22 Pryor S P, Madeo A C, Reynolds J C, Sarlis N J, Arnos K S, Nance W E, Yang Y, Zalewski C K, Brewer C C, Butman J A, Griffith A J. SLC26A4/PDS genotype-phenotype correlation in hearing loss with enlargement of the vestibular aqueduct (EVA): evidence that Pendred syndrome and non-syndromic EVA are distinct clinical and genetic entities.  J Med Genet. 2005;  42 159-165
  • 23 Coyle B, Reardon W, Herbrick J A, Tsui L C, Gausden E, Lee J, Coffey R, Grueters A, Grossman A, Phelps P D, Luxon L, Kendall-Taylor P, Scherer S W, Trembath R C. Molecular analysis of the PDS gene in Pendred syndrome.  Hum Mol Genet. 1998;  7 1105-1112
  • 24 Scott D A, Wang R, Kreman T M, Andrews M, McDonald J M, Bishop J R, Smith R J, Karniski L P, Sheffield V C. Functional differences of the PDS gene product are associated with phenotypic variation in patients with Pendred syndrome and non-syndromic hearing loss (DFNB4).  Hum Mol Genet. 2000;  9 1709-1715

Dr. Ralf Birkenhäger

Universitätsklinik für Hals-, Nasen- und Ohrenheilkunde und Poliklinik
Universitätsklinikum Freiburg

Killianstraße 5
D-79106 Freiburg

Email: birkenhaeger@hno.ukl.uni-freiburg.de