References and Notes
1a
Reformatsky S.
Ber. Dtsch. Chem. Ges.
1887,
20:
1210
1b
Shriner RL.
Org. React.
1942,
1:
1
1c
Garudemar M.
Organomet. Chem. Rev. A
1972,
8:
183
1d
Harada T.
Mukaiyama T.
Chem. Lett.
1982,
161
1e
Kagoshima H.
Hashimoto Y.
Oguro D.
Saigo K.
J. Org. Chem.
1998,
63:
691
1f
Borah HN.
Boruah RC.
Sandhu JS.
Chem. Commun.
1991,
154
1g
Fukuzawa S.
Matsuzaka H.
Yoshimitsu S.
J. Org. Chem.
2000,
65:
1702
1h
Kagayama A.
Igarashi K.
Shiina I.
Mukaiyama T.
Bull. Chem. Soc. Jpn.
2000,
73:
2579
2a
Fustero S.
Torre MG.
Pina B.
Fuentes AS.
J. Org. Chem.
1999,
64:
5551
2b
Nakamura E.
Kubota K.
Sakata G.
J. Am. Chem. Soc.
1997,
119:
5457
2c
Capriati V.
Florio S.
Luisi R.
Eur. J. Org. Chem.
2001,
2035
2d
Hou XL.
Luo YM.
Yuan K.
Dai LX.
J. Chem. Soc., Perkin Trans. 1
2002,
1487
2e
Lanter JC.
Chan H.
Zhang X.
Sui Z.
Org. Lett.
2005,
7:
5905
3a
Shimizu M.
Toyoda T.
Org. Biomol. Chem.
2004,
2:
2891
3b
Shimizu M.
Kobayashi F.
Hayakawa R.
Tetrahedron
2001,
57:
9591
3c
Shimizu M.
Takeuchi Y.
Sahara T.
Chem. Lett.
2001,
1196
3d
Shimizu M.
Inayoshi K.
Sahara T.
Org. Biomol. Chem.
2005,
3:
2237
3e
Shimizu M.
Sahara T.
Chem. Lett.
2002,
888
3f
Hayakawa R.
Shimizu M.
Org. Lett.
2000,
2:
4079
4 To a solution of O-benzylhydroxylamine hydrochloride (2.07 g, 13.0 mmol) in H2O (30.0 mL) was added chloroacetone (0.79 mL, 10.0 mmol) and NaHCO3 (0.84 g, 10.0 mmol) at ambient temperature for 5.0 h. Then, the mixture was extracted with CH2Cl2 (3 × 10 mL). The combined organic extracts were dried over anhyd Na2SO4 and concentrated in vacuo to give chloroacetone O-benzyl oxime (2.08 g, quant., E/Z-mixture) as a colorless oil. Under an argon atmosphere, to a solution of chloroacetone O-benzyl oxime (2.00 g, 10.1 mmol) in acetone (30.0 mL) was added a NaI (2.11 g, 14.1 mmol) at ambient temperature for 14.5 h. The mixture was filtered through a Celite® pad, and extracted with Et2O (3 × 10 mL). The organic phase was washed with 10% aq NaHSO3, dried over anhyd Na2SO4, and concentrated in vacuo. Purification by silica gel column chromatography (n-hexane-EtOAc = 30:1) gave iodoacetone O-benzyl oxime (2, 1.90 g, 65%, E:Z = 23:77, E-isomer: R
f
= 0.23; Z-isomer: R
f
= 0.29) as a pale brown oil. E-Isomer: 1H NMR (500 MHz, CDCl3): δ = 2.03 (s, 3 H), 3.87 (s, 2 H), 5.15 (s, 2 H), 7.28-7.38 (m, 5 H). 13C NMR (125.7 MHz, CDCl3): δ = 6.0, 13.9, 76.0, 127.9, 128.0, 128.4, 137.6, 154.6. Z-Isomer: 1H NMR (500 MHz, CDCl3): δ = 2.34 (s, 3 H), 3.91 (s, 2 H), 5.10 (s, 2 H), 7.26-7.40 (m, 5 H). 13C NMR (125.7 MHz, CDCl3): δ = -7.2, 18.5, 76.0, 127.8, 127.9, 128.3, 137.7, 153.5.
5 To a solution of TiI4 (69.4 mg, 0.125 mmol) and titanium tetraisopropoxide (0.125 mL, 0.125 mmol, 1.0 M in CH2Cl2) in THF (1.0 mL) was added a solution of (Z)-iodoacetone O-benzyl oxime (2, 72.2 mg, 0.250 mmol) in THF (1.0 mL) at 0 °C under an argon atmosphere. After 30 min stirring, to the resulting solution was added a THF (1.0 mL) solution of N-benzylidene-4-methoxyphenylamine (1a, 21.1 mg, 0.100 mmol) and silica gel (dried, 300 mg/mmol) at -78 °C. The mixture was allowed to warm to ambient temperature with stirring for 12.0 h. The reaction was quenched with sat. aq NaHCO3, and EtOAc and 10% aq NaHSO3 were added successively. The mixture was filtered through a Celite® pad, and extracted with EtOAc (3 × 10 mL). The combined organic extracts were dried over anhyd Na2SO4 and concentrated in vacuo. Purification on preparative silica gel TLC (n-hexane-EtOAc = 4:1 as an eluent) gave 4-[N-(4-methoxyphenyl)amino]-4-phenyl-2-butanone-O-benzyl oxime (3a, 35.4 mg, 94%) as a pale brown oil. 1H NMR (270 MHz, CDCl3): δ = 1.70 (s, 3 H), 2.41 (dd, J = 5.3, 13.1 Hz, 1 H), 3.20 (dd, J = 8.9, 13.1 Hz, 1H), 3.66 (s, 3 H), 4.30 (br s, 1 H), 4.51 (dd, J = 5.3, 8.9 Hz, 1 H), 5.11 (d, J = 12.2 Hz, 1 H), 5.17 (d, J = 12.2 Hz, 1 H), 6.26-6.30 (m, 2 H), 6.57-6.62 (m, 2 H), 7.22-7.46 (m, 10 H). 13C NMR (67.8 MHz, CDCl3): δ = 20.7, 38.8, 55.7, 56.6, 75.8, 114.2, 114.6, 126.2, 127.3, 128.0, 128.4, 128.5, 128.7, 137.7, 141.3, 143.4, 151.7, 156.0.
6a
Kotsuki H.
Hayashida K.
Shimanouchi T.
Nishizawa H.
J. Org. Chem.
1996,
61:
984
6b
Veselovsky VV.
Gybin AS.
Lozanova AV.
Moiseenkov AM.
Smit WA.
Tetrahedron Lett.
1988,
29:
175
6c
Weinstein RD.
Renslo AR.
Danheiser RL.
Tester JW.
J. Phys. Chem. B
1999,
103:
2878
7a 4-Iodobutanol was obtained from the reaction of THF with TiI4 (Scheme
[3]
). Confer:
7b
Breen CCB.
Bautista MT.
Schauer CK.
White PS.
J. Am. Chem. Soc.
2000,
122:
3952
7c
Dufour P.
Dartiguenave M.
Dartiguenave Y.
Simard M.
Beauchamp AL.
J. Organomet. Chem.
1998,
563:
53
8a
Shimizu M.
Goto H.
Hayakawa R.
Org. Lett.
2002,
4:
4097
8b
Ooi T.
Miura T.
Ohmatsu K.
Saito A.
Maruoka K.
Org. Biomol. Chem.
2004,
2:
3312
8c
Brocchini SJ.
Eberle M.
Lawton RG.
J. Am. Chem. Soc.
1988,
110:
5211
9a
Shimada T.
Yamamoto Y.
Tetrahedron Lett.
1998,
39:
471
9b
Bayón P.
March P.
Espinosa M.
Figueredo M.
Font J.
Tetrahedron: Asymmetry
2000,
11:
1757
9c
Rigby JH.
Fleming M.
Tetrahedron Lett.
2002,
43:
8643
9d
Hayashi M.
Kohmura K.
Oguni N.
Synlett
1991,
774
9e
Krohn K.
Steingröver K.
Vinke I.
J. Pract. Chem.
1999,
341:
62
10a The formation of the following species 6, 7 may be excluded. See: Fraile JM.
Garcia J.
Mayoral JA.
Proietti MG.
Grazia M.
Sanchez MC.
J. Phys. Chem.
1996,
100:
19484
10b Although there are several arguments on the role of silica gel, e. g., scavenger of iodine or water, its acidity may be responsible as part of the imine activation on the surface (Scheme
[4]
).6
Scheme 4
11a
Zeng L.
Li J.
Muller M.
Yan S.
Mujtaba S.
Pan C.
Wang Z.
Zhou M.-M.
J. Am. Chem. Soc.
2005,
127:
2376
11b
Yamashita Y.
Kobayashi S.
J. Am. Chem. Soc.
2004,
126:
11279
11c
Lopez-Garcia M.
Alfonso I.
Gotor V.
Chem. Eur. J.
2004,
10:
3006
11d
Wang S.
Meades C.
Wood G.
Osnowski A.
Anderson S.
Yuill R.
Thomas M.
Mezna M.
Jackson W.
Midgley C.
Griffiths G.
Fleming I.
Green S.
McNae I.
Wu S.-Y.
McInnes C.
Zheleva D.
Walkinshaw MD.
Fischer PM.
J. Med. Chem.
2004,
47:
1662
11e
Markowska A.
Rozanski A.
Wolczynski S.
Midura-Nowaczek K.
Farmaco
2002,
57:
1019
11f
Reddy VK.
Valasinas A.
Sarkar A.
Basu HS.
Marton LJ.
Frydman B.
J. Med. Chem.
1998,
41:
4723