Abstract
An improved method for the synthesis of 4-hydroxy-2-methyl-1-oxo-1,2-dihydroisoquinoline-3-carboxylic
acid derivatives is described. The synthetic route involves initial phthalic anhydride
aminolysis with alkylaminoacetic acid derivatives, further esterification with diazomethane
and final heterocyclization of the phthalamic ester intermediates by alkoxide-induced
Dieckmann condensation. The best yields are reached for esters and N,N-disubstituted
carboxamides.
Key words
heterocycles - isoquinolinones - cyclization - lactams - enols
References
Among others:
<A NAME="RM00206SS-1A">1a </A>
Khan SR.
Mhaka A.
Pili R.
Isaacs JT.
Bioorg. Med. Chem. Lett.
2001,
11:
451
<A NAME="RM00206SS-1B">1b </A>
Shi J.
Xiao Z.
Ihnat MA.
Kamat C.
Pandit B.
Hu Z.
Li PK.
Bioorg. Med. Chem. Lett.
2003,
13:
1187
<A NAME="RM00206SS-1C">1c </A>
Jönsson S.
Andersson G.
Fex T.
Fristedt T.
Hedlund G.
Jansson K.
Abramo L.
Fritzson I.
Pekarski O.
Runström A.
Sandin H.
Thuvesson I.
Björk A.
J. Med. Chem.
2004,
47:
2075 ; and references cited therein
<A NAME="RM00206SS-1D">1d </A>
Brunmark C.
Runström A.
Ohlsson L.
Sparre B.
Brodin T.
Aström M.
Hedlund G.
J. Neuroimmunol.
2002,
130:
163
<A NAME="RM00206SS-1E">1e </A>
Tsuji K.
Spears GW.
Nakamura K.
Tojo T.
Seki N.
Sugiyama A.
Matsuo M.
Bioorg. Med. Chem. Lett.
2002,
12:
85
<A NAME="RM00206SS-1F">1f </A>
Folkes A.
Brown SD.
Canne LE.
Chan J.
Engelhardt E.
Epshteyn S.
Faint R.
Golec J.
Hanel A.
Kearney P.
Leahy JW.
Mac M.
Matthews D.
Prisbilla MP.
Sanderson J.
Simon RJ.
Tesfai Z.
Vicker N.
Wang S.
Webb RR.
Charlton P.
Bioorg. Med. Chem. Lett.
2002,
12:
1063
<A NAME="RM00206SS-1G">1g </A>
Ukrainets IV.
Taran SG.
Gorokhova OV.
Taran EA.
Jaradat NA.
Petukhova IY.
Chem. Heterocycl. Compd. (Engl. Transl.)
2000,
36:
166
<A NAME="RM00206SS-1H">1h </A>
Ukrainets IV.
Taran SG.
Likhanova NV.
Rybakov VB.
Gorokhova OV.
Jaradat NA.
Chem. Heterocycl. Compd. (Engl. Transl.)
2000,
36:
49
<A NAME="RM00206SS-1I">1i </A>
Kugalowski JJ.
Baker R.
Curtis NR.
Leeson PD.
Mawer IM.
Moseley AM.
Ridgill MP.
Rowley M.
Stansfield I.
Foster AC.
Grimwood S.
Hill RG.
Kemp JA.
Marshall JR.
Saywell KL.
Tricklebank MD.
J. Med. Chem.
1994,
37:
1402
Among others, see:
<A NAME="RM00206SS-2A">2a </A>
Lombardino JG.
J. Heterocycl. Chem.
1970,
7:
1057
<A NAME="RM00206SS-2B">2b </A>
Schapira CB.
Abasolo MI.
Perillo IA.
J. Heterocycl. Chem.
1985,
22:
577 ; and references cited therein
<A NAME="RM00206SS-2C">2c </A>
Kadin SB.
Wiseman EH.
Nature
1969,
222:
275
<A NAME="RM00206SS-2D">2d </A>
Lazer E.
Miao CK.
Cywin CL.
Sorcek R.
Wong H.-C.
Meng Z.
Potocki I.
Hoermann M.
Snow RJ.
Tschantz MA.
Kelly TA.
McNeil DW.
Coutts SJ.
Churchill L.
Graham V.
David E.
Grob PM.
Engel W.
Meier H.
Trummlitz G.
J. Med. Chem.
1997,
40:
980
Among others, see:
<A NAME="RM00206SS-3A">3a </A>
Blanco MM.
Schapira CB.
Levin G.
Perillo IA.
J. Heterocycl. Chem.
2005,
42:
493 ; and references cited therein
<A NAME="RM00206SS-3B">3b </A>
Scotese AC, and
Santilli AA. inventors; S. African ZA 8000631.
; Chem. Abstr . 1982 , 96 , 6706
<A NAME="RM00206SS-3C">3c </A>
Scotese AC,
Morris RL, and
Santilli AA. inventors; US Patent 4301281.
; Chem. Abstr. 1982 , 97 , 23815
<A NAME="RM00206SS-3D">3d </A>
Armitage BJ, and
Leslie BW. inventors; PCT Int. Appl. WO 9611199.
; Chem.Abstr . 1996 , 125 , 114712
<A NAME="RM00206SS-3E">3e </A>
Nuebling C,
Von Deyn W,
Theobald H,
Westphalen K.-O,
Kardorff U,
Helmut W,
Kappe T, and
Gerber M. inventors; Ger. Offen. DE 4227747.
; Chem. Abstr. 1994 , 120 , 323554z
Among others, see:
<A NAME="RM00206SS-4A">4a </A>
Toyama M.
Otomasu H.
Chem. Pharm. Bull.
1985,
33:
5543
<A NAME="RM00206SS-4B">4b </A>
Alonso-Silva IJ.
Pardo M.
Soto JL.
Heterocycles
1988,
27:
357
<A NAME="RM00206SS-4C">4c </A>
Beattie JF.
Hales NJ.
J. Chem. Soc., Perkin Trans. 1
1992,
751
<A NAME="RM00206SS-4D">4d </A>
Khalaj A.
Adibpour N.
Heterocycles
1999,
51:
131
<A NAME="RM00206SS-5A">5a </A>
Suzuki M.
Nunami K.
Matsumoto K.
Yoneda N.
Miyoshi M.
Synthesis
1978,
461
<A NAME="RM00206SS-5B">5b </A>
Nunami K.
Suzuki M.
Matsumoto K.
Miyoshi M.
Yoneda N.
Chem. Pharm. Bull.
1979,
27:
1373
<A NAME="RM00206SS-5C">5c </A>
Miyoshi S,
Yoneda N,
Matsumoto K,
Suzuki M, and
Nunami K. inventors; Jpn. Kokai Tokkio Koho 7970285.
; Chem. Abstr . 1979 , 91 , 175221
<A NAME="RM00206SS-6">6 </A>
Ease of trans-esterification is related to the presence of an electron-withdrawing
group at the α-position to the ester (ref. 7) and it was also observed in Dieckmann
cyclizations which lead to hydroxy derivatives of related heterocycles (ref. 8).
<A NAME="RM00206SS-7">7 </A>
Janczewski D.
Synoradzki L.
Wlostowski M.
Synlett
2003,
420
<A NAME="RM00206SS-8">8 </A>
Blanco MM.
Perillo IA.
Schapira CB.
J. Heterocycl. Chem.
1999,
36:
979 ; and references cited therein
<A NAME="RM00206SS-9">9 </A>
This fact is related to the acid character of aniline hydrogen in phthalamic ester
2c which would allow its deprotonation in basic medium, thus resulting in a less probable
formation of the carbanion necessary for the heterocyclization. A similar behavior
was observed in the alkoxide promoted cyclization of compounds structurally related
to 2c (ref. 3a).
<A NAME="RM00206SS-10">10 </A>
Lombardino (ref. 2a) describes the reaction product as a solid, formula: C17 H14 N2 O3 ·0.5H2 O, mp 195-197 °C.
<A NAME="RM00206SS-11">11 </A>
The nonresolved multiplicity of the methylene and methyl signals is related to stereochemical
features of this type of amides: partial double bond character of CO-N amide bond
and/or the diastereotopicity of the methylene hydrogens associated with the presence
of a chiral axis (ref. 4a).