Synlett 2006(7): 1130-1131  
DOI: 10.1055/s-2006-939723
SPOTLIGHT
© Georg Thieme Verlag Stuttgart · New York

Diethylaminosulfur Trifluoride (DAST)

Sabrina Baptista Ferreira*
Centro de Tecnologia, Bloco A, Instituto de Química, Universidade Federal do Rio de Janeiro, 21941-590 Rio de Janeiro, Brazil
e-Mail: sabrinab@iq.ufrj.br;
Further Information

Publication History

Publication Date:
24 April 2006 (online)

Introduction

Fluorination is an important structural modification for ­diverse classes of bioactive organic molecules. The introduction of a fluorine atom or fluorinated group into organic molecules often changes their physical, chemical and physiological properties, resulting in greater stability and lipophilicity of the molecule. [1] Diethylaminosulfur trifluoride (DAST) is a widely used fluorinating reagent, [2-6] which is very effective for converting alcohols, ketones, aldehydes and carboxylic acids into their corresponding fluoro derivatives. This reagent has its origins in the ­pioneering work of Middleton et al. at DuPont. [7] DAST is synthesized via the substitution of a fluorine atom of ­sulfur tetrafluoride (SF4) by a diethylamino group, resulting in a powerful fluorination agent (Scheme 1). DAST presents the following advantages: the product is rela­tively easy to handle and shows good selectivity, con­sequently being less prone to formation of olefins in elimination reactions and/or rearrangement reactions. This reagent is commercially available as liquid that can be handled at room temperature and in common laboratory glassware. However, DAST is unstable above 70 °C.

Scheme 1

    References

  • 1 Smart BE. Characteristics of C-F Systems; In Organofluorine Chemistry: Principles and Commercial Applications   Banks RE. Smart BE. Tatlow JC. Plenum; New York: 1994.  p.57 
  • 2 Hudlicky M. Org. React.  1988,  35:  513 
  • 3 Xia J. Chen Y. Liberatore KM. Selinsky BS. Tetrahedron Lett.  2003,  44:  9295 
  • 4 Pu YM. Torok DS. Ziffer H. J. Med. Chem.  1995,  38:  4120 
  • 5 Bartmann E. Krause J. J. Fluorine Chem.  1993,  61:  117 
  • 6 Thomas MG. Suckling JC. Pitt AR. Suckling KE. J. Chem. Soc., Perkin Trans. 1  1999,  3191 
  • 7 Middleton W. J. Org. Chem.  1975,  40:  574 
  • 8 Hertel LW. Kroin JS. Misner JW. Tustin JM. J. Org. Chem.  1980,  53:  2406 
  • 9 Bunnelle W. McKinnis R. Narayanan BA. J. Org. Chem.  1989,  55:  768 
  • 10 Anilkumar R. Burton DJ. Tetrahedron Lett.  2003,  44:  6661 
  • 11 De Jonghe S. Overmeire IV. Calenbergh SV. Hendrix C. Busson R. De Keukeleire D. Herdewijn P. Eur. J. Org. Chem.  2000,  3177 
  • 12 Singh RP. Shreeve JM. J. Org. Chem.  2003,  68:  6063 
  • 13 Lakshmipathi P. Gree D. Gree R. Org. Lett.  2002,  4:  451 
  • 14 Biedermann D. Sarek J. Klinot J. Hajduch M. Dzubakb P. Synthesis  2005,  1157 
  • 15 Kirihara M. Niimi K. Momose T. Chem. Commun.  1997,  599 
  • 16 Lafargue P. Guenot P. Lellouche JP. Synlett  1995,  171