References and Notes
<A NAME="RG39605ST-1A">1a</A>
Ohloff G.
Progress in the Chemistry of Organic Natural Products
Vol. 35:
Zechmeister L.
Springer Verlag;
Wien:
1978.
p.431
<A NAME="RG39605ST-1B">1b</A>
Schmidt RR.
Betz R.
Angew. Chem., Int. Ed. Engl.
1984,
23:
430
<A NAME="RG39605ST-1C">1c</A>
Picman AK.
Biochem. Syst. Ecol.
1986,
14:
225
<A NAME="RG39605ST-1D">1d</A>
Mori K.
Tetrahedron
1989,
45:
3233
<A NAME="RG39605ST-2A">2a</A>
Kano S.
Shibuya S.
Ebata T.
Heterocycles
1980,
14:
661
<A NAME="RG39605ST-2B">2b</A>
Mulzer J. In
Comprehensive Organic Synthesis
Vol. 6:
Trost BM.
Fleming I.
Pergamon;
New York:
1991.
p.323
<A NAME="RG39605ST-2C">2c</A>
Ogliarusco MA.
Wolfe JF.
Synthesis of Lactones and Lactams
Patai S.
Rappoport Z.
Wiley;
Chichester:
1993. and references therein
<A NAME="RG39605ST-2D">2d</A>
Collins I.
J. Chem. Soc., Perkin. Trans. 1
1999,
1377
<A NAME="RG39605ST-3">3</A>
Liang L.
Ramaseshan M.
MaGee DI.
Tetrahedron
1993,
49:
2159
<A NAME="RG39605ST-4">4</A>
Nakatsuka M.
Ragan JA.
Sammakia T.
Smith DB.
Uehling DE.
Schreiber SL.
J. Am. Chem. Soc.
1990,
112:
5583
<A NAME="RG39605ST-5">5</A>
Compain P.
Goré J.
Vatèle JM.
Tetrahedron
1996,
52:
10405
<A NAME="RG39605ST-6">6</A>
Movassaghi M.
Jacobsen EN.
J. Am. Chem. Soc.
2002,
124:
2456
<A NAME="RG39605ST-7">7</A>
Tiecco M.
Testaferri L.
Temperini A.
Bagnoli L.
Marini F.
Santi C.
Synlett
2003,
655
<A NAME="RG39605ST-8">8</A>
Tiecco M.
Testaferri L.
Temperini A.
Bagnoli L.
Marini F.
Santi C.
Terlizzi R.
Eur. J. Org. Chem.
2004,
3447
<A NAME="RG39605ST-9">9</A>
All new compounds were fully characterized by MS, 1H NMR and 13C NMR spectroscopy and by combustion analysis. Compounds 1b,c,
[8]
1e
[16]
and 1h,i
[8]
were prepared as described in the literature from the corresponding epoxides whereas
compound 1f was obtained by reduction of the corresponding aldehyde with NaBH4. Alkynol 1a was obtained by reaction of a propargyl organometallic reagent with the proper carbonyl
compound.
[5]
Compound 1d was prepared by reduction of the corresponding ketone
[17]
with NaBH4. Hydroxy ester 1g was obtained by reduction of the corresponding oxoester, which was synthesized by
alkylation of the dianion
[18]
of (-)-endo-borneyl 3-oxo-butanoate.
[19]
Physical, spectral and analytical data of selected compounds are reported below.
(2
S
,3
R
)-2-(Dibenzylamino)-1-phenylhex-5-yn-3-ol (
1c).
Oil, 72% yield. 1H NMR (200 MHz, CDCl3): δ = 7.38-7.06 (m, 15 H), 4.05-3.90 (m, 1 H), 3.80-3.50 (m, 4 H), 3.16-2.58 (m,
3 H), 2.58 (ddd, 1 H, J = 16.7, 3.7, 2.7 Hz), 2.23 (ddd, 1 H, J = 16.7, 8.3, 2.7 Hz), 2.08 (d, 1 H, J = 4.7 Hz), 1.94 (t, 1 H, J = 2.7 Hz). 13C NMR (50 MHz, CDCl3): δ = 140.9, 139.5 (2 C), 129.5 (2 C), 128.8 (3 C), 128.3 (4 C), 128.2 (3 C), 126.9
(2 C), 125.9, 81.3, 70.9, 70.6, 62.8, 54.7, 54.2, 32.1, 25.7. Anal. Calcd for C26H27NO: C, 84.51; H, 7.37; N, 3.79. Found: C, 84.18; H, 7.67; N, 3.62.
(3
R
)-1-(Benzyloxy)hept-6-yn-3-ol (
1i).
Oil, 73% yield. [α]D
23 +24.6 (c 1.75, CHCl3). 1H NMR (200 MHz, CDCl3): δ = 7.45-7.20 (m, 5 H), 4.51 (s, 2 H), 3.94 (quint, 1 H, J = 5.7 Hz), 3.79-3.57 (m, 2 H), 3.07 (br s, 1 H), 2.32 (dt, 2 H, J = 5.0, 2.6 Hz), 1.95 (t, 1 H, J = 2.6 Hz), 1.82-1.58 (m, 4 H). 13C NMR (50 MHz, CDCl3): δ = 137.7, 128.4 (2 C), 127.7 (2 C), 127.6, 84.2, 73.2 (2 C), 69.8, 68.9, 68.4,
36.2, 35.7. MS: m/z (relative intensity) = 218 (18), 159 (11), 109 (64), 91 (100), 83 (10), 65 (12).
Anal. Calcd for C14H18O2: C, 77.03; H, 8.31. Found: C, 77.29; H, 8.65.
<A NAME="RG39605ST-10A">10a</A>
Braga AL.
Silveira CC.
Reckziegel A.
Menezes PH.
Tetrahedron Lett.
1993,
34:
8041
<A NAME="RG39605ST-10B">10b</A>
Tingoli M.
Tiecco M.
Testaferri L.
Balducci R.
Synlett
1993,
211
<A NAME="RG39605ST-11">11</A>
Ring-Closure Reaction. General Procedure.
To a solution of the alkynyl phenyl selenide 8 (1 mmol) in CH2Cl2 (15 mL) powdered p-toluenesulfonic acid monohydrate (4 mmol) was added at r.t. and the reaction mixture
was stirred at 60 °C. The progress of the reaction was monitored by TLC. Reaction
times ranged from 1-9 h. Solid K2CO3 and CH2Cl2 were added and the mixture was filtered. The filtrate was dried and evaporated. After
chromatography on silica gel column, compounds 12 and 13 were obtained in a pure form. Compounds 12a and 13c are commercial products whereas lactones 12c,
[20]
13a
[21]
and 13b
[22]
have physical and spectral data identical to those reported in the literature. Physical
and spectral data of 12b, 13e and 13f are reported below.
(5
S
)-5-[(Benzyloxy)methyl]dihydrofuran-2(3
H
)-one (
12b).
[23]
Oil, 71% yield. [α]D
24 +21.0 (c 1.45, EtOH) {Lit.
[23]
[α]D
15 +18.1 (c 2.7, EtOH)}. 13C NMR (50 MHz, CDCl3): δ = 177.2, 137.6, 128.4 (2 C), 127.7, 127.5 (2 C), 78.9, 73.4, 71.5, 28.3, 24.0.
MS: m/z (%) = 206 (2), 105 (22), 91 (100), 85 (78), 65 (19).
(6
S
)-6-[(Benzyloxy)methyl]tetrahydro-2
H
-pyran-2-one
[24]
(13e).
Oil, 61% yield. [α]D
22 +9.1 (c 2.88, CHCl3). 13C NMR (50 MHz, CDCl3): δ = 171.1, 137.7, 128.4 (2 C), 127.7, 127.6 (2 C), 79.0, 73.5, 71.8, 29.6, 24.5,
18.2. MS: m/z (%) = 129 (1) [M - 91], 114 (58), 99 (35), 91 (100), 71 (45), 55 (23).
(6
R
)-6-[2-(Benzyloxy)ethyl]tetrahydro-2
H
-pyran-2-one
[25]
(13f).
Oil, 59% yield. [α]D
28 +55.0 (c 2.01, CHCl3). 13C NMR (50 MHz, CDCl3): δ = 171.8, 138.1, 128.3 (2 C), 127.9 (2 C), 127.6, 77.5, 73.1, 65.7, 36.0, 29.6,
27.9, 18.3. MS:
m/z (%) = 234 (16), 206 (8), 107 (44), 91 (100), 79 (14), 68 (30), 55 (12).
<A NAME="RG39605ST-12A">12a</A>
Bondar D.
Liu J.
Müller T.
Paquette LA.
Org. Lett.
2005,
7:
1813
<A NAME="RG39605ST-12B">12b</A>
Elworthy TR.
Brill EL.
Chou S.
Chu F.
Harries JR.
Hendricks T.
Huang J.
Kim W.
Lach LK.
Mirzadegan T.
Yee C.
Walker KAM.
J. Med. Chem.
2004,
47:
6124
<A NAME="RG39605ST-12C">12c</A>
Yao Z.
Wu Y.
Tetrahedron Lett.
1994,
35:
157
<A NAME="RG39605ST-13A">13a</A>
Aguilar N.
Moyano A.
Pericas MA.
Riera A.
J. Org. Chem.
1998,
63:
3560
<A NAME="RG39605ST-13B">13b</A>
Nadin A.
Sanchez Lopez JM.
Neduvelil JG.
Thomas SR.
Tetrahedron
2001,
57:
1861
<A NAME="RG39605ST-14A">14a</A>
Corey EJ.
Pyne SG.
Su W.
Tetrahedron Lett.
1983,
24:
4883
<A NAME="RG39605ST-14B">14b</A>
Taylor RJK.
Wiggins K.
Robinson DH.
Synthesis
1990,
589
<A NAME="RG39605ST-15">15</A>
Diez-Martin D.
Koteka NR.
Ley SV.
Mantegani S.
Menendez JC.
Organ HM.
White AD.
Tetrahedron
1992,
48:
7899
<A NAME="RG39605ST-16">16</A>
Pale P.
Chuche J.
Eur. J. Org. Chem.
2000,
1019
<A NAME="RG39605ST-17">17</A>
Thommen M.
Veretenov AL.
Guidetti-Grept R.
Keese R.
Helv. Chim. Acta
1996,
461
<A NAME="RG39605ST-18">18</A>
Huckin SN.
Weiler L.
J. Am. Chem. Soc.
1974,
96:
1082
<A NAME="RG39605ST-19">19</A>
Christoffers J.
Onal N.
Eur. J. Org. Chem.
2000,
1633
<A NAME="RG39605ST-20">20</A>
Fukuzawa S.
Miura M.
Saitoh T.
J. Org. Chem.
2003,
68:
2042
<A NAME="RG39605ST-21">21</A>
Mazur P.
Nakanishi K.
J. Org. Chem.
1992,
57:
1047
<A NAME="RG39605ST-22">22</A>
Griffths DV.
Wilcox G.
J. Chem. Soc., Perkin Trans. 2
1988,
431
<A NAME="RG39605ST-23">23</A>
Taniguchi M.
Koga K.
Yamada S.
Tetrahedron
1974,
30:
3547
<A NAME="RG39605ST-24">24</A>
Barua NC.
Schmidt RR.
Synthesis
1986,
1067
<A NAME="RG39605ST-25">25</A>
The possible use of the presently described method for the synthesis of medium-sized
lactones was suggested by a referee.