Minim Invasive Neurosurg 2006; 49(3): 127-134
DOI: 10.1055/s-2006-932181
Original Article
© Georg Thieme Verlag Stuttgart · New York

Usefulness of 18F-Fluorodeoxyglucose PET for Radiosurgery Planning and Response Monitoring in Patients with Recurrent Spinal Metastasis

H.-S.  Gwak1 , S.-M.  Youn1 , U.  Chang1 , D.  H.  Lee2 , G.  J.  Cheon3 , C.  H.  Rhee1 , K.  Kim4 , H.-J.  Kim4
  • 1Department of Neurosurgery, Korea Institute of Radiological and Medical Science, Seoul, Korea
  • 2Department of Radiation Oncology, Korea Institute of Radiological and Medical Science, Seoul, Korea
  • 3Department of Nuclear Medicine, Korea Institute of Radiological and Medical Science, Seoul, Korea
  • 4Seoul National University Medical College, Seoul, Korea
Further Information

Publication History

Publication Date:
23 November 2006 (online)

Abstract

Introduction: With the advancement and successful treatment of metastatic spinal cord disease, newer treatments are needed for the long-term survivors of recurrent disease. The lack of a standardized re-treatment regimen and the difficulty in delineating the tumor margins among patients who have received the treatment with metallic spinal fixation and conventional radiation are two of the challenges to be faced in recurrent metastatic spinal cord disease. In these patients, we applied hypofractionated stereotactic radiosurgery by defining the tumor margin with 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET). Patients and Methods: Three consecutive recurrent spinal metastasis patients underwent the CyberKnife treatment (Accuray, Inc., Sunnyvale, CA) from March 2004 to July 2004. A three-fraction schedule was applied at approximately 24 hour intervals. One patient had sarcoma and the other two patients had breast cancer. All patients had received previous conventional radiotherapy after operation ranging from 30 Gy to 45 Gy. CT-based planning was corrected by the FDG-PET hyperuptake area with the help of nuclear medicine. The mass responses were followed not only by MRI but also by FDG-PET, which was taken prior to treatment, and at one and six months after the treatment. The changes in standard uptake value (SUV) of serial PET were taken as a measure of response. To evaluate the relative SUV changes from different pretreatment values, we set a reduction index (RI), which represents the ratio of SUV change to pretreatment SUV. Results: No significant complications were noted during treatment with a mean follow-up of 13.3 months. The tumor volume on CT-based planning was 2.2 times larger than that of the CT-PET combined planning in case 1 of paraspinal muscle invasion. But the tumor volumes showed minimal changes in the other cases, in which the metastatic tumors were confined to the vertebral bodies. The SUV one month after treatment showed variable decreases and the RI ranged from 0.07 to 0.7. However, the SUVs at 6 months were well correlated with the clinical results. One patient showed marginal failure and the other two patients showed local control of the tumor, as their RI values were 0.65 and 0.87, respectively. Conclusion: To our knowledge, this is the first report using FDG-PET with radiosurgery in patients with recurrent spinal metastases hidden under metallic artifacts. The mass responses measured by SUV changes in FDG-PET correlated with the clinical results.

References

  • 1 Bunger C, Laursen M, Hansen E S, Neumann P, Christensen F B, Hoy K. A new algorithm for the surgical treatment of spinal metastases.  Curr Opin Orthop. 1999;  10 101-105
  • 2 Camins M B, Jenkins 3rd A L, Singhal A, Perrin R G. Tumors of the vertebral axis: benign, primary malignant, and metastatic tumors. In: Winn HR (ed). Youmans neurological surgery, volume 4, fifth edition. Philadelphia: Elsevier Inc 2002: 4835-4868
  • 3 Schiff D, Shaw E G, Cascino T L. Outcome after spinal reirradiation for malignant epidural spinal cord compression.  Ann Neurol. 1995;  37 583-589
  • 4 Hamilton A J, Lulu B A, Fosmire H, Gossett L. LINAC-based spinal stereotactic radiosurgery.  Stereotact Funct Neurosurg. 1996;  66 1-9
  • 5 Adler Jr J R, Murphy M J, Chang S D, Hancock S L. Image guided robotic radiosurgery.  Neurosurgery. 1999;  44 1299-1306
  • 6 Murphy M J, Adler Jr J R, Bodduluri M, Dooley J, Forster K, Hai J, Le Q, Luxton G, Martin D, Poen J. Image-guided radiosurgery for the spine and pancreas.  Comp Aid Surg. 2000;  5 278-288
  • 7 Ryu S I, Chang S D, Kim D H, Murphy M J, Le Q T, Martin D P, Adler Jr J R. Image-guided hypo-fractionated stereotactic radiosurgery to spinal lesions.  Neurosurgery. 2001;  49 838-846
  • 8 Shaw E, Kline R, Gillin M, Souhami L, Hirschfeld A, Dinapoli R, Martin L. Radiation Therapy Oncology Group: radiosurgery quality assurance guidelines.  Int J Radiat Oncol Biol Phys. 1993;  27 1231-1239
  • 9 Loeffler J S, Alexander 3rd E, Hochberg F H, Wen P Y, Morris J H, Schoene W C, Siddon R L, Morse R H, Black P M. Clinical patterns of failure following stereotactic interstitial irradiation for malignant gliomas.  Int J Radiat Oncol Biol Phys. 1990;  19 455-1462
  • 10 Wong C S, Hao Y. Long-term recovery kinetics of radiation damage in rat spinal cord.  Int J Radiat Oncol Biol Phys. 1999;  37 171-179
  • 11 Ang K K, Price R E, Stephens L C, Jiang G L, Feng Y, Schultheiss T E, Peters L J. The tolerance of primate spinal cord to re-irradiation.  Int J Radiat Oncol Biol Phys. 1993;  25 459-464
  • 12 Kogel A J van der. Dose-volume effects in the spinal cord.  Radiother Oncol. 1993;  29 105-109
  • 13 Gerszten P C, Ozhasoglu C, Burton S A, Vogel W J, Atkins B A, Kalnicki S, Welch W C. CyberKnife frameless stereotactic radiosurgery for spinal lesions: clinical experience in 125 cases.  Neurosurgery. 2004;  55 89-98
  • 14 Ryu S, Fang Yin F, Rock J, Zhu J, Chu A, Kagan E, Rogers L, Ajlouni M, Rosenblum M, Kim J H. Image-guided and intensity-modulated radiosurgery for patients with spinal metastasis.  Cancer. 2003;  97 2013-2018
  • 15 Dwamena B A, Sonnad S S, Angobaldo J O, Wahl R L. Metastases from non-small cell lung cancer: mediastinal staging in the 1990 s - meta-analytic comparison of PET and CT.  Radiology. 1999;  213 530-536
  • 16 Yao M, Graham M M, Hoffman H T, Smith R B, Funk G F, Graham S M, Dornfeld K J, Skwarchuk M, Menda Y, Buatti J M. The role of post-radiation therapy FDG PET in prediction of necessity for post-radiation therapy neck dissection in locally advanced head-and-neck squamous cell carcinoma.  Int J Radiat Oncol Biol Phys. 2004;  59 1001-1010
  • 17 Mah K, Caldwell C B, Ung Y C, Danjoux C E, Balogh J M, Ganguli S N, Ehrlich L E, Tirona R. The impact of 18FDG-PET on target and critical organs in CT-based treatment planning of patients with poorly defined non-small-cell lung carcinoma: a prospective study.  Int J Radiat Oncol Biol Phys. 2002;  52 339-350
  • 18 Heron D E, Andrade R S, Flickinger J, Johnson J, Agarwala S S, Wu A, Kalnicki S, Avril N. Hybrid PET-CT simulation for radiation treatment planning in head-and-neck cancers: a brief technical report.  Int J Radiat Oncol Biol Phys. 2004;  60 1419-1424
  • 19 Erdi Y E, Rosenzweig K, Erdi A K, Macapinlac H A, Hu Y C, Braban L E, Humm J L, Squire O D, Chui C S, Larson S M, Yorke E D. Radiotherapy treatment planning for patients with non-small cell lung cancer using positron emission tomography (PET).  Radiother Oncol. 2002;  62 51-60
  • 20 Tralins K S, Douglas J G, Stelzer K J, Mankoff D A, Silbergeld D L, Rostomily R C, Hummel S, Scharnhorst J, Krohn K A, Spence A M. Volumetric analysis of 18F-FDG PET in glioblastoma multiforme: prognostic information and possible role in definition of target volumes in radiation dose escalation.  J Nucl Med. 2002;  43 1667-1673
  • 21 Glantz M J, Hoffman J M, Coleman R E, Freidman A H, Hanson M W, Burger P C, Herndon II J E, Meisler W J, Schold Jr S C. Identification of early recurrence of primary central nervous system tumors by [18F]fluorodeoxyglucose positron emission tomography.  Ann Neurol. 1991;  29 347-355
  • 22 Chaiken L, Rege S, Hoh C, Choi Y, Jabour B, Julliard G, Hawkins R, Parker R. Positron emission tomography with fluorodeoxyglucose to evaluate tumor response and control after radiation therapy.  Int J Radiat Oncol Biol Phys. 1993;  27 455-464
  • 23 Barker F G, Chang S M, Valk P E, Pounds T R, Prados M D. 18-Fluorodeoxyglucose uptake and survival of patients with suspected recurrent malignant glioma.  Cancer. 1997;  79 115-126
  • 24 Sasaki M, Kuwabara Y, Yoshida T, Nakagawa M, Fukumura T, Mihara F, Morioka T, Fukui M, Masuda K. A comparative study of thallium-201 SPET, carbon-11 methionine PET and fluorine-18 fluorodeoxyglucose PET for the differentiation of astrocytic tumors.  Eur J Nucl Med. 1998;  25 1261-1269
  • 25 Allal A S, Slosman D O, Kebdani T, Allaoua M, Lehmann W, Dulguerov P. Prediction of outcome in head-and-neck cancer patients using the standardized uptake value of 2-[18F]fluoro-2-deoxy-D-glucose.  Int J Radiat Oncol Biol Phys. 2004;  59 1295-1300
  • 26 Arslan N, Miller T R, Dehdashti F, Battafarano R J, Siegel B A. Evaluation of response to neoadjuvant therapy by quantitative 2-deoxy-2-[18F]fluoro-D-glucose with positron emission tomography in patients with esophageal cancer.  Mol Imaging Biol. 2002;  4 301-310
  • 27 Koike I, Ohmura M, Hata M, Takahashi N, Oka T, Ogino I, Lee J, Umezawa T, Kinbara K, Watai K, Ozawa Y, Inoue T. FDG-PET scanning after radiation can predict tumor regrowth three months later.  Int J Radiat Oncol Biol Phys. 2003;  57 1231-1238
  • 28 Higashi T, Fisher S J, Brown R S, Nakada K, Walter G L, Wahl R L. Evaluation of the early effect of local irradiation on normal rodent bone marrow metabolism using FDG: preclinical PET studies.  J Nucl Med. 2000;  41 2026-2035
  • 29 Ericson K, Kihlstrom L, Mogard J, Karlsson B, Lindquist C, Wilde Collins V P, Stone-Elander S. Postron emission tomography using 18F-fluorodeoxyglucose in patients with stereotactically irradiated brain metastasis.  Stereotact Funct Neurosurg. 1996;  66 214-224
  • 30 Lee J K, Liu R S, Shiang H R, Pan D H. Usefulness of semiquantitative FDG-PET in the prediction of brain tumor treatment response to gamma knife radiosurgery.  J Comput Assist Tomogr. 2003;  27 525-529

Hyun-Jib Kim,M. D., Ph. D. 

Department of Neurosurgery · Clinical Neuroscience Center · Seoul National University Bundang Hospital

300 Gumi-dong

Bundang-gu

Sungnam-shi

Gyeonggi-do 463-707

Republic of Korea

Phone: +82/31/787/7166

Fax: +82/31/787/4059

Email: jibkim@snu.ac.kr

    >