Planta Med 2006; 72(6): 507-513
DOI: 10.1055/s-2006-931536
Original Paper
Pharmacology
© Georg Thieme Verlag KG Stuttgart · New York

Modulation of Pgp Function by Boswellic Acids

Claudia-Carolin Weber1 , Karen Reising2 , Walter E. Müller1 , Manfred Schubert-Zsilavecz2 , 3 , Mona Abdel-Tawab2 , 3
  • 1Institute of Pharmacology, ZAFES, Biocenter, University of Frankfurt, Germany
  • 2Central Laboratory of German Pharmacists, Eschborn, Germany
  • 3Institute of Pharmaceutical Chemistry, ZAFES, Biocenter, University of Frankfurt, Germany
Further Information

Publication History

Received: August 19, 2005

Accepted: November 24, 2005

Publication Date:
24 April 2006 (online)

Abstract

Boswellic acids, the main active ingredients of Boswellia serrata, are gaining more and more importance in the treatment of peritumoural oedema and chronic inflammatory diseases. They may be even considered as alternative drugs to corticosteroids in reducing cerebral peritumoural oedema. An important focus for drugs acting in the central nervous system is achieving a high extent of brain penetration. Today there is increasing evidence for the importance of transporters, especially P-glycoprotein (Pgp), for drug disposition and resulting clinical response. Pharmacokinetic studies revealed that the concentrations of the potent keto derivatives, the 11-keto-β-boswellic acid (KBA) and the acetyl-11-keto-β-boswellic acid (AKBA), in proportion to boswellic acids lacking a keto group, like the β-boswellic acid, are much lower in plasma than in the orally administered extract. Moreover the brain/plasma ratio for KBA and AKBA determined in preliminary experiments on rats was only about 0.51 and 0.81, respectively, in spite of their lipophilicity. Until now little is known about the cerebral pharmacokinetics of boswellic acids and how it may be influenced. Since many drugs are known to interact with Pgp at the level of the intestine and the blood-brain barrier the modulatory potencies of the Boswellia serrata extract of H15® and the major boswellic acids on the transport activity of Pgp have been determined in two in vitro assays. A human lymphocytic leukaemia cell line (VLB cells) expressing Pgp was chosen as model for human Pgp, and porcine brain capillary endothelial cells (PBCEC cells) were taken as model for the blood-brain barrier using calcein acetoxymethyl ester (calcein-AM) as Pgp substrate. It was found that the Boswellia extract, as well as the keto-boswellic acids inhibit the transport activity of Pgp in the micromolecular range in both cell types. No modulation was observed using those boswellic acids which have no keto group in their structure. The inhibition of Pgp at the blood-brain barrier by Boswellia extract is probably not relevant for the brain availability of other Pgp substrates, because of the low plasma levels determined for KBA and AKBA. However the presented data could not exclude the possibility of drug interactions caused by modulation of Pgp by extracts of Boswellia serrata on the gastrointestinal level.

References

  • 1 Safayhi H, Mack T, Sabieraj J, Anazado M I, Subramanian L R, Ammon H PT. Boswellic acids: novel, specific, nonredox inhibitors of 5-lipoxygenase.  J Pharmacol Exp Ther. 1992;  261 1143-4
  • 2 Safayhi H, Ball R, Sailer E R, Ammon H PT. Inhibition by boswellic acids of human leukocyte elastase.  J Pharmacol Exp Ther. 1997;  281 460-3
  • 3 Syrovets T, Büchele B, Krauss C, Laumonnier Y, Simmet T. Acetyl-boswellic acids inhibit lipopolysaccharide mediated TNF-alpha induction in monocytes by direct interaction with IκB kinases.  J Immunol. 2005;  174 498-506
  • 4 Gupta I, Parihar A, Malhotra P, Singh G B, Lüdtke R, Sahayhi H. et al . Effects of Boswellia serrata gum resin on patients with ulcerative colitis.  Eur J Med Res. 1997;  2 37-43
  • 5 Gerhardt H, Seifert F, Buvari P, Vogelsang H, Repges R. Therapy of active Crohn’s disease with Boswellia serrata extract H15.  Z Gastroenterol. 2001;  39 11-7
  • 6 Maskowitz M A, Kiwak K J, Hekimian K, Levine L. Synthesis of compounds with properties of leukotrienes C4 and D4 in gerbil brains after ischemia and perfusion.  Science. 1984;  224 886-9
  • 7 Simmet T, Luck W, Winking M, Delank W K, Peskar B A. Identification and characterization of cysteinyl-leukotriene formation in tissue slices from human intracranial tumors: evidence for their biosynthesis under in vivo conditions.  J Neurochem. 1990;  54 2091-9
  • 8 Boeker D K, Winking M. Die Rolle von Boswelliasäuren in der Therapie maligner Gliome.  Dtsch Aerztebl. 1997;  94 A1197-9
  • 9 Winking M, Sarikaya S, Rahmanian A, Joedicke A, Boeker D K. Boswellic acids inhibit glioma growth: a new treatment option?.  J Neurooncol. 2000;  46 97-103
  • 10 Emea (European Agency for the Evaluation of Medicinal Products). Public summary of positive opinion for orphan designation of Boswellia serrata extract for the treatment of peritumoral oedema derived from brain tumors. Available at www.emea.eu.int. Accessed August 2005
  • 11 Schinkel A H. The physiological function of drug-transporting P-glycoproteins.  Sem Cancer Biol. 1997;  8 161-70
  • 12 Schinkel A H. Pharmacological insights from P-glycoprotein knockout mice.  Int J Clin Pharmacol Ther. 1998;  36 9-13
  • 13 Abdel Tawab M, Kaunzinger A, Bahr U, Karas M, Wurglics M, Schubert-Zsilavecz M. Development of a high-performance liquid chromatographic method for the determination of 11-keto-β-boswellic acid in human plasma.  J Chromatogr B Analyt Technol Biomed Life Sci. 2001;  761 221-7
  • 14 Buechele B, Simmet T. Analysis of 12 different pentacyclic triterpenic acids from frankincense in human plasma by high-performance liquid chromatography and photo diode array detection.  J Chromatogr B Analyt Technol Biomed Life Sci. 2003;  795 355-62
  • 15 Reising K, Meins J, Bastian B, Eckert G, Mueller W E, Schubert-Zsilavecz M. et al . Determination of boswellic acids in brain and plasma by high-performance liquid chromatography/tandem mass spectrometry.  Anal Chem. 2005;  77 6640-5
  • 16 Foley G E, Lazarus H, Faber S, Uzman B G, Boone B A, McCarthy R E. Continuous culture of human lymphoblasts from peripheral blood of a child with acute leukemia.  Cancer. 1965;  18 522-9
  • 17 Beck W T, Mueller T J, Tanzer L R. Altered surface membrane glycoproteins in Vinca alkaloid-resistant human leukemic lymphoblasts.  Cancer Res. 1979;  39 2070-6
  • 18 Tiberghien F, Loor F. Ranking of P-glycoprotein substrates and inhibitors by a calcein-AM fluorometry screening assay.  Anticancer Drugs. 1996;  7 568-78
  • 19 Simmet T, Zugmaier W, Buechele B. Analytik von pentazyklischen Triterpenen aus Weihrauchharz, Weihrauchharz-Extrakt Kapseln und H15 Tabletten.  GIT Laborfachzeitschrift. 2004;  2 123-7
  • 20 Franke H, Galla H, Beuckmann C T. Primary cultures of brain microvessel endothelial cells: a valid and flexible model to study drug transport through the blood-brain barrier in vitro .  Brain Res Brain Res Protoc. 2000;  5 248-56
  • 21 Audus K L, Borchardt R T. Characterization of an in vitro blood-brain barrier model system for studying drug transport and metabolism.  Pharm Res. 1986;  3 81-7
  • 22 Bauer B, Miller D S, Fricker G. Compound profiling for P-glycoprotein at the blood-brain barrier using a microplate screening system.  Pharm Res. 2003;  20 1170-6
  • 23 Weiss J, Dormann S M, Martin-Facklam M, Kerpen C J, Ketabi-Kiyanvash N, Haefeli W E. Inhibition of P-glycoprotein by newer antidepressants.  J Pharmacol Exp Ther. 2003;  305 197-204
  • 24 Sterk V, Buechele B, Simmet T. Effect of food intake on the bioavailability of boswellic acids from a herbal preparation in healthy volunteers.  Planta Med. 2004;  70 1155-60

Dr. Mona Abdel Tawab

Central Laboratory of German Pharmacists

Carl-Mannich-Strasse 20

65760 Eschborn

Germany

Phone: +49-6196-937-955

Fax: +49-6196-48 11 99

Email: m.tawab@zentrallabor.com

    >