Zusammenfassung
Die Kernspintomographie (MRT) hat sich in den letzten Jahren zu einer Referenzmethode
der myokardialen Vitalitätsdiagnostik entwickelt. Erst kürzlich konnte auch das Potenzial
der Mehrschicht-Spiral-Computertomographie (MSCT) für die Vitalitätsdiagnostik gezeigt
werden. In dieser Arbeit werden zunächst ausführlich die einer Myokardischämie folgenden
pathophysiologischen Veränderungen des Herzmuskels einschließlich der Abgrenzung von
stunned und hibernierendem Myokard dargestellt. Als grundlegender Ansatz der Vitalitätsdiagnostik
in MRT und MSCT wird in der Hauptsache das Konzept der myokardialen Spätanreicherung
betrachtet. Als weitere Ansätze werden die Infarktdiagnostik mittels Perfusionsbildgebung
und alternativer Kontrastmittel vorgestellt. Die Beziehung zwischen pathophysiologischen
Veränderungen und dem Erscheinungsbild in MRT und MSCT wird gezeigt. Die klinischen
Konsequenzen der MRT- und MSCT-Befunde werden betrachtet.
Abstract
Over the last decade magnetic resonance (MR) imaging has become a well-established
method for visualizing myocardial viability. Multislice spiral computed tomography
(MSCT) has also recently proven to be a reliable method for assessing the myocardium
for this indication. This review extensively describes the changes in acute and chronic
myocardial infarction including the differentiation of stunned or hibernating myocardium.
This review focuses on delayed myocardial contrast enhancement as a key concept of
viability imaging. Myocardial perfusion imaging as well as the use of alternative
contrast agents are introduced. Pathophysiology is correlated to the changes observed
in MR imaging and MSCT. The clinical impact of the imaging findings is described.
Key words
CT - heart - MRI - viability
Literatur
- 1
Hammermeister K E, DeRouen T A, Dodge H T.
Variables predictive of survival in patients with coronary disease. Selection by univariate
and multivariate analyses from the clinical, electrocardiographic, exercise, arteriographic,
and quantitative angiographic evaluations.
Circulation.
1979;
59
421-430
- 2
Gersh B J, Anderson J L.
Thrombolysis and myocardial salvage. Results of clinical trials and the animal paradigm
- paradoxic or predictable?.
Circulation.
1993;
88
296-306
- 3 American H eart Association. Heart Disease and Stroke Statistics - 2006 Update. Dallas,
Texas; 2006
- 4
Hachamovitch R, Hayes S W, Friedman J D. et al .
Comparison of the short-term survival benefit associated with revascularization compared
with medical therapy in patients with no prior coronary artery disease undergoing
stress myocardial perfusion single photon emission computed tomography.
Circulation.
2003;
107
2900-2907
- 5
Allman K C, Shaw L J, Hachamovitch R. et al .
Myocardial viability testing and impact of revascularization on prognosis in patients
with coronary artery disease and left ventricular dysfunction: a meta-analysis.
J Am Coll Cardiol.
2002;
39
1151-1158
- 6
Kloner R A, Bolli R, Marban E. et al .
Medical and cellular implications of stunning, hibernation, and preconditioning: an
NHLBI workshop.
Circulation.
1998;
97
1848-1867
- 7
Wu K C, Lima J A.
Noninvasive imaging of myocardial viability: current techniques and future developments.
Circ Res.
2003;
93
1146-1158
- 8
Kramer P H, Goldstein J A, Herkens R J. et al .
Imaging of acute myocardial infarction in man with contrast-enhanced computed transmission
tomography.
Am Heart J.
1984;
108
1514-1523
- 9
Mahnken A H, Koos R, Katoh M. et al .
Assessment of myocardial viability in reperfused acute myocardial infarction using
16-slice computed tomography in comparison to magnetic resonance imaging.
J Am Coll Cardiol.
2005;
45
2042-2047
- 10
Braunwald E, Kloner R A.
The stunned myocardium: prolonged, postischemic ventricular dysfunction.
Circulation.
1982;
66
1146-1149
- 11
Heyndrickx G R, Millard R W, McRitchie R J. et al .
Regional myocardial functional and electrophysiological alterations after brief coronary
artery occlusion in conscious dogs.
J Clin Invest.
1975;
56
978-985
- 12
Nixon J V, Brown C N, Smitherman T C.
Identification of transient and persistent segmental wall motion abnormalities in
patients with unstable angina by two-dimensional echocardiography.
Circulation.
1982;
65
1497-1503
- 13
Breisblatt W M, Stein K L, Wolfe C J. et al .
Acute myocardial dysfunction and recovery: a common occurrence after coronary bypass
surgery.
J Am Coll Cardiol.
1990;
15
1261-1269
- 14
Gao W D, Liu Y, Mellgren R. et al .
Intrinsic myofilament alterations underlying the decreased contractility of stunned
myocardium. A consequence of Ca2+-dependent proteolysis?.
Circ Res.
1996;
78
455-465
- 15
McDonald K S, Moss R L, Miller W P.
Incorporation of the troponin regulatory complex of post-ischemic stunned porcine
myocardium reduces myofilament calcium sensitivity in rabbit psoas skeletal muscle
fibers.
J Mol Cell Cardiol.
1998;
30
285-296
- 16
Rahimtoola S H.
The hibernating myocardium.
Am Heart J.
1989;
117
211-221
- 17
Elsasser A, Schlepper M, Klovekorn W P. et al .
Hibernating myocardium: an incomplete adaptation to ischemia.
Circulation.
1997;
96
2920-2931
- 18
Reimer K A, Lowe J E, Rasmussen M M. et al .
The wavefront phenomenon of ischemic cell death. 1. Myocardial infarct size vs. duration
of coronary occlusion in dogs.
Circulation.
1977;
56
786-794
- 19
Reimer K A, Jennings R B.
The „wavefront phenomenon” of myocardial ischemic cell death. II. Transmural progression
of necrosis within the framework of ischemic bed size (myocardium at risk) and collateral
flow.
Lab Invest.
1979;
40
633-644
- 20
Gallagher K P, Osakada G, Matsuzaki M. et al .
Nonuniformity of inner and outer systolic wall thickening in conscious dogs.
Am J Physiol.
1985;
249
H241-248
- 21
Sheridan F M, Cole P G, Ramage D.
Leukocyte adhesion to the coronary microvasculature during ischemia and reperfusion
in an in vivo canine model.
Circulation.
1996;
93
1784-1787
- 22
Reffelmann T, Kloner R A.
The „no-reflow” phenomenon: basic science and clinical correlates.
Heart.
2002;
87
162-168
- 23
Ito H, Maruyama A, Iwakura K.
Clinical implications of the „no-reflow” phenomenon: a predictor of complications
and left ventricular remodeling in reperfused anterior wall myocardial infarction.
Circulation.
1996;
93
223-228
- 24
Wu K C, Zerhouni E A, Judd R M. et al .
Prognostic significance of microvascular obstruction by magnetic resonance imaging
in patients with acute myocardial infarction.
Circulation.
1998;
97
765-772
- 25
Cohn J N, Ferrari R, Sharpe N.
Cardiac remodelling-concepts and clinical implications: a consensus paper from an
international forum on cardiac remodeling. Behalf of an International Forum on Cardiac
Remodeling.
Am Coll Cardiol. J.
2000;
35
569-582
- 26
Sutton M G, Sharpe N.
Left ventricular remodeling after myocardial infarction: pathophysiology and therapy.
Circulation.
2000;
101
2981-2988
- 27
Gaudron P, Eilles C, Kugler I. et al .
Progressive left ventricular dysfunction and remodeling after myocardial infarction.
Circulation.
1993;
87
755-763
- 28
McNamara M T, Higgins C B, Ehman R L. et al .
Acute myocardial ischemia: magnetic resonance contrast enhancement with gadolinium-DTPA.
Radiology.
1984;
153
157-163
- 29
Niendorf T, Sodickson D.
Beschleunigung der kardiovaskulären MRT mittels paralleler Bildgebung: Grundlagen,
praktische Aspekte, klinische Anwendungen und Perspektiven.
Fortschr Röntgenstr.
2006;
178
15-30
- 30
Baer F M, Theissen P, Schneider C A. et al .
Dobutamine magnetic resonance imaging predicts contractile recovery of chronically
dysfunctional myocardium after successful revascularization.
J Am Coll Cardiol.
1998;
31
1040-1048
- 31
Sommer T, Hofer U, Omran H. et al .
Stress-Cine-MRT zur Primärdiagnostik der koronaren Herzkrankheit.
Fortschr Röntgenstr.
2002;
174
605-613
- 32
Abdel-Aty H, Zagrosek A, Schulz-Menger J. et al .
Delayed enhancement and T2-weighted cardiovascular magnetic resonance imaging differentiate
acute from chronic myocardial infarction.
Circulation.
2004;
109
2411-2416
- 33
Kostler H, Beer M, Landschutz W. et al .
31P-MR-Spektroskopie aller Wandabschnitte des menschlichen Herzens bei 1,5 T mit akquisitionsgewichteter
Chemical-Shift-Bildgebung.
Fortschr Röntgenstr.
2001;
173
1093-1098
- 34
Sandstede J, Pabst T, Beer M. et al .
23Natrium MRT zur Infarktdarstellung am menschlichen Herzen.
Fortschr Röntgenstr.
2000;
172
739-743
- 35
Messroghli D R, Niendorf T, Schulz-Menger J. et al .
T1 mapping in patients with acute myocardial infarction.
J Cardiovasc Magn Reson.
2003;
5
353-359
- 36
Schmitt M, Mohrs O K, Petersen S E. et al .
Bestimmung der myokardialen Perfusionsreserve bei KHK-Patienten mit der kontrastverstärkten
MRT: Ein Vergleich zwischen semiquantitativer und quantitativer Auswertung.
Fortschr Röntgenstr.
2002;
174
187-195
- 37
Jerosch-Herold M, Muehling O, Wilke N.
MRI of myocardial perfusion.
Semin Ultrasound CT MR.
2006;
27
2-10
- 38
Diesbourg L D, Prato F S, Wisenberg G. et al .
Quantification of myocardial blood flow and extracellular volumes using a bolus injection
of Gd-DTPA: kinetic modeling in canine ischemic disease.
Magn Reson Med.
1992;
23
239-253
- 39
Krombach G A, Saeed M, Higgins C B. et al .
Contrast-enhanced MR delineation of stunned myocardium with administration of MnCl(2)
in rats.
Radiology.
2004;
230
183-190
- 40
Rehwald W G, Fieno D S, Chen E L. et al .
Myocardial magnetic resonance imaging contrast agent concentrations after reversible
and irreversible ischemic injury.
Circulation.
2002;
105
224-229
- 41
Kim R J, Fieno D S, Parrish T B. et al .
Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age,
and contractile function.
Circulation.
1999;
100
1992-2002
- 42
Hunold P, Schlosser T, Vogt F M. et al .
Myocardial late enhancement in contrast-enhanced cardiac MRI: distinction between
infarction scar and non-infarction-related disease.
AJR Am J Roentgenol.
2005;
184
1420-1426
- 43
Wesbey G E, Higgins C B, McNamara M T. et al .
Effect of gadolinium-DTPA on the magnetic relaxation times of normal and infarcted
myocardium.
Radiology.
1984;
153
165-169
- 44
Simonetti O P, Kim R J, Fieno D S. et al .
An improved MR imaging technique for the visualization of myocardial infarction.
Radiology.
2001;
218
215-223
- 45
Kim R J, Shah D J, Judd R M.
How we perform delayed enhancement imaging.
J Cardiovasc Magn Reson.
2003;
5
505-514
- 46
Oshinski J N, Yang Z, Jones J R. et al .
Imaging time after Gd-DTPA injection is critical in using delayed enhancement to determine
infarct size accurately with magnetic resonance imaging.
Circulation.
2001;
104
2838-2842
- 47
Huber A M, Schoenberg S O, Hayes C. et al .
Phase-sensitive inversion-recovery MR imaging in the detection of myocardial infarction.
Radiology.
2005;
237
854-860
- 48
Wagner A, Mahrholdt H, Holly T A. et al .
Contrast-enhanced MRI and routine single photon emission computed tomography (SPECT)
perfusion imaging for detection of subendocardial myocardial infarcts: an imaging
study.
Lancet.
2003;
361
374-379
- 49
Beek A M, Kuhl H P, Bondarenko O. et al .
Delayed contrast-enhanced magnetic resonance imaging for the prediction of regional
functional improvement after acute myocardial infarction.
J Am Coll Cardiol.
2003;
42
895-901
- 50
Choi K M, Kim R J, Gubernikoff G. et al .
Transmural extent of acute myocardial infarction predicts long-term improvement in
contractile function.
Circulation.
2001;
104
1101-1107
- 51
Wu E, Judd R M, Vargas J D. et al .
Visualisation of presence, location, and transmural extent of healed Q-wave and non-Q-wave
myocardial infarction.
Lancet.
2001;
357
21-28
- 52
Kim R J, Wu E, Rafael A. et al .
The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial
dysfunction.
N Engl J Med.
2000;
343
1445-1453
- 53
Knuesel P R, Nanz D, Wyss C. et al .
Characterization of dysfunctional myocardium by positron emission tomography and magnetic
resonance: relation to functional outcome after revascularization.
Circulation.
2003;
108
1095-1100
- 54
Sandstede J J, Beer M, Lipke C. et al .
Time course of contrast enhancement patterns after Gd-BOPTA in correlation to myocardial
infarction and viability: a feasibility study.
J Magn Reson Imaging.
2001;
14
789-974
- 55
Krombach G A, Higgins C B, Chujo M. et al .
Gadomer-enhanced MR imaging in the detection of microvascular obstruction: alleviation
with nicorandil therapy.
Radiology.
2005;
236
510-518
- 56
Pislaru S V, Ni Y, Pislaru C. et al .
Noninvasive measurements of infarct size after thrombolysis with a necrosis-avid MRI
contrast agent.
Circulation.
1999;
99
690-696
- 57
Saeed M, Lund G, Wendland M F. et al .
Magnetic resonance characterization of the peri-infarction zone of reperfused myocardial
infarction with necrosis-specific and extracellular nonspecific contrast media.
Circulation.
2001;
103
871-876
- 58
Bremerich J, Saeed M, Arheden H. et al .
Normal and infarcted myocardium: differentiation with cellular uptake of manganese
at MR imaging in a rat model.
Radiology.
2000;
216
524-530
- 59
Natanzon A, Aletras A H, Hsu L Y. et al .
Determining canine myocardial area at risk with manganese-enhanced MR imaging.
Radiology.
2005;
236
859-866
- 60
Schmermund A, Gerber T, Behrenbeck T. et al .
Measurement of myocardial infarct size by electron beam computed tomography: a comparison
with 99 mTc sestamibi.
Invest Radiol.
1998;
33
313-321
- 61
Flohr T, Stierstorfer K, Raupach R. et al .
Performance evaluation of a 64-slice CT system with z-flying focal spot.
Fortschr Röntgenstr.
2004;
176
1803-1810
- 62
Weber C, Begemann P, Wedegartner U. et al .
Koronarkalkquantifizierung und Koronarangiographie mittels Mehrzeilendetektorspiral-CT
- Klinische Erfahrungen.
Fortschr Röntgenstr.
2005;
177
50-59
- 63
Mahnken A H, Gunther R W, Krombach G A.
Grundlagen der linksventrikulären Funktionsanalyse mittels MRT und MSCT.
Fortschr Röntgenstr.
2004;
176
1365-1379
- 64
Heuschmid M, Rothfuss J, Schroder S. et al .
Bestimmung linksventrikulärer Funktionsparameter: Vergleich von 16-Zeilen-Mehrschicht-CT
mit der MR-Tomographie.
Fortschr Röntgenstr.
2005;
177
60-66
- 65
Nikolaou K, Knez A, Sagmeister S. et al .
Assessment of myocardial infarctions using multirow-detector computed tomography.
J Comput Assist Tomogr.
2004;
28
286-292
- 66
Nikolaou K, Sanz J, Poon M. et al .
Assessment of myocardial perfusion and viability from routine contrast-enhanced 16-detector-row
computed tomography of the heart: preliminary results.
Eur Radiol.
2005;
15
864-871
- 67
Gosalia A, Haramati L B, Sheth M P. et al .
CT detection of acute myocardial infarction.
Am J Roentgenol.
2004;
182
1563-1566
- 68
Kurata A, Mochizuki T, Koyama Y. et al .
Myocardial perfusion imaging using adenosine triphosphate stress multi-slice spiral
computed tomography alternative to stress myocardial perfusion scintigraphy.
Circ J.
2005;
69
550-557
- 69
Mahnken A, Klotz E, Lautenschläger S. et al .
Assessment of myocardial infarction from cardiac MSCT using model-based heart segmentation
and perfusion weighted color maps.
Eur Radiol.
2005;
15
E13
- 70
Nesto R W, Kowalchuk G J.
The ischemic cascade: temporal sequence of hemodynamic, electrocardiographic and symptomatic
expressions of ischemia.
Am J Cardiol.
1987;
59
23C-30C
- 71
Mohlenkamp S, Lerman L O, Lerman A. et al .
Minimally invasive evaluation of coronary microvascular function by electron beam
computed tomography.
Circulation.
2000;
102
2411-2416
- 72
Mahnken A H, Bruners P, Katoh M. et al .
Dynamic multi-section CT imaging in acute myocardial infarction: preliminary animal
experience.
Eur Radiol.
2006;
16
746-752
- 73
Stantz K M, Liang Y, Meyer C A. et al .
In-vivo regional myocardial perfusion measurements in a porcine model by ECG-gated
multislice computed tomography S.
Proceedings of SPIE.
2003;
5031
222-233
- 74
Wintersperger B J, Ruff J, Becker C R. et al .
Assessment of regional myocardial perfusion using multirow-detector computed tomography.
Eur Radiol.
2002;
12 Suppl 1
294
- 75
Higgins C B, Sovak M, Schmidt W. et al .
Uptake of contrast materials by experimental acute myocardial infarctions: a preliminary
report.
Invest Radiol.
1978;
13
337-339
- 76
Masuda Y, Yoshida H, Morooka N. et al .
The usefulness of x-ray computed tomography for the diagnosis of myocardial infarction.
Circulation.
1984;
70
217-225
- 77
Lardo A C, Cordeiro M AS, Silva C. et al .
Contrast-enhanced multidetector computed tomography viability imaging after myocardial
infarction: characterization of myocyte death, microvascular obstruction, and chronic
scar.
Circulation.
2006;
113
394-404
- 78
Paul J F, Wartski M, Caussin C. et al .
Late defect on delayed contrast-enhanced multidetector row CT scans in the prediction
of SPECT infarct size after reperfused acute myocardial infarction: initial experience.
Radiology.
2005;
236
485-489
- 79
Gerber B L, Belge B, Legros G J. et al .
Characterization of acute and chronic myocardial infarcts by multidetector computed
tomography: comparison with contrast-enhanced magnetic resonance.
Circulation.
2006;
113
823-833
- 80
Koyama Y, Matsuoka H, Mochizuki T. et al .
Assessment of reperfused acute myocardial infarction with two-phase contrast enhanced
helical CT: prediction of left ventricular function and wall thickness.
Radiology.
2005;
235
804-811
- 81
Buecker A, Katoh M, Krombach G A. et al .
A feasibility study of contrast enhancement of acute myocardial infarction in multislice
computed tomography: comparison with magnetic resonance imaging and gross morphology
in pigs.
Invest Radiol.
2005;
40
700-704
- 82
Mahnken A H, Wildberger J E.
Multislice spiral computed tomography for assessment of myocardial viability in myocardial
infarction.
Eur Radiol.
2006;
16 Suppl 1
493
- 83
Park J M, Choe Y H, Chang S. et al .
Usefulness of multidetector-row CT in the evaluation of reperfused myocardial infarction
in a rabbit model.
Korean J Radiol.
2004;
5
19-524
PD Dr. Andreas H. Mahnken
Klinik für Radiologische Diagnostik, Universitätsklinikum der RWTH Aachen
Pauwelsstraße 30
52074 Aachen
Telefon: ++49/2 41/80 88 33 2
Fax: ++49/2 41/8 08 24 99
eMail: mahnken@rad.rwth-aachen.de