Radiologie up2date 2006; 6(2): 125-136
DOI: 10.1055/s-2006-925411
Muskuloskelettale Erkrankungen
© Georg Thieme Verlag KG Stuttgart · New York

MR-Diagnostik von Knochenmarkerkrankungen

MR Imaging of the Bone MarrowH.  E.  Daldrup-Link1
  • 1Department of Radiology, Section of Pediatric Radiology, University of California San Francisco
Weitere Informationen


26. Juni 2006 (online)


Das Knochenmark ist das viertgrößte Organ des Körpers. Seine Hauptfunktion ist die Hämatopoese, d. h. es versorgt den Körper mit Erythrozyten, Leukozyten und Blutplättchen, um die Oxygenation, Immunfunktion und Autoreparaturfunktion des Körpers aufrechtzuerhalten. Die Kenntnis der MRT-Signalgebung des Knochenmarks ist essenziell für die Befundung von MRT-Aufnahmen, da das Knochenmark auf Aufnahmen jeder Körperregion mit abgebildet ist und folglich stets mitbeurteilt werden muss. Der vorliegende Artikel gibt einen Überblick über das diagnostische Vorgehen für der Beurteilung des Knochenmarks auf MRT-Aufnahmen.


The bone marrow is the fourth largest organ of the body. Its major function represents the hematopoiesis, i. e. it supplies the body with erythrocytes, leukocytes and platelets in order to maintain the oxygenation, immune function and self-restauration of the body. The knowledge of the MR signal intensity of the normal and abnormal bone marrow is essential for a comprehensive report of virtually any MR image, because the bone marrow is nearly always depicted and, thus, has to be always evaluated. The following article will provide an overview on the current approach to and knowledge on MR imaging of the bone marrow.


  • 1 Plecha D M. Imaging of bone marrow disease in the spine.  Semin Musculoskelet Radiol. 2000;  4 321-327
  • 2 Vahlensieck M, Schmidt H M. Das normale Knochenmark und seine Varianten in der MRT.  Radiologe. 2000;  40 688-693
  • 3 Vanel D, Dromain C, Tardivon A. MRI of bone marrow disorders.  Eur Radiol. 2000;  10 224-229
  • 4 Delfaut E M, Beltran J, Johnson G, Rousseau J, Marchandise X, Cotton A. Fat Suppression in MR Imaging: Techniques and Pitfalls.  Radiographics. 1999;  19 373-382
  • 5 Baur A, Stabler , Bruning R. et al . Diffusion weighted MR imaging of bone marrow: differentiation of benign versus pathologic compression fractures.  Radiology. 1998;  207 349-356
  • 6 Castillo M, Arbelaez A, Smith J K. et al . Diffusion-weighted MR imaging offers no advantage over routine noncontrast MR imaging in the detection of vertebral metastases.  AJNR. 2000;  21 948-953
  • 7 Daldrup-Link H E, Rummeny E J, Ihssen B, Kienast J, Link T M. Iron-oxide-enhanced MR imaging of bone marrow in patients with non-Hodgkin's lymphoma: differentiation between tumor infiltration and hypercellular bone marrow.  Eur Radiol. 2002;  12 1557-1566. Epub 2002 Feb 05
  • 8 Metz S, Lohr S, Settles S, Beer A, Woertler M, Rummeny E J, Daldrup-Link H E. Ferumoxtran-10 enhanced MR imaging of the bone marrow before and after conditioning therapy in patients with Non-Hodgkins Lymphoma.  Eur Radiol. 2005;  in press
  • 9 Simon G H, von Vopelius-Feldt J, Wendland M, Schlegel J, Mei-Hsiu C, Daldrup-Link H E. Ultrasmall superparamagnetic iron oxide enhanced MR imaging of normal bone marrow in rodents.  Academic Radiology. 2005;  12 1190-1197
  • 10 Dawson K L, Moore S G, Rowland J M. Age related marrow changes in the pelvis:magnetic resonance and anatomic findings.  Radiology. 1992;  183 47-51
  • 11 Kricun M E. Red-yellow marrow conversion: Its effect on the location of some solitary bone lesions.  Skel Radiology. 1985;  14 10
  • 12 Montazel J L, Divine M, Lepage E, Kobeiter H, Breil S, Rahmouni A. Normal spinal bone marrow in adults: dynamic gadolinium-enhanced MR imaging.  Radiology. 2003;  229 703-709
  • 13 Moore S G. „MR Imaging of Bone Marrow, Syllabus”. Special Course in MR 1990. Chicago; The Radiological Society of North America 1990: 219-227
  • 14 Otake S, Mayr N A, Ueda T, Magnotta V A, Yuh W T. Radiation-induced changes in MR signal intensity and contrast enhancement of lumbosacral vertebrae: do changes occur only inside the radiation therapy field?.  Radiology. 2002;  222 179-183
  • 15 Onu M, Savu M, Lungu-Solomonescu C, Harabagiu I, Pop T. Early MR changes in vertebral bone marrow for patients following radiotherapy.  Eur Radiol. 2001;  11 1463-1469
  • 16 Rozman C, Cervantes F, Rozman M, Mercader J M, Montserrat E. Magnetic resonance imaging in myelofibrosis and essential thrombocythaemia: contribution to differential diagnosis.  Br J Haematol. 1999;  104 574-580
  • 17 Hoane B R, Shields A F, Porter B A, Shulman H M. Detection of lymphomatous bone marrow involvement with magnetic resonance imaging.  Blood. 1991;  78 728-738
  • 18 Moulopoulos L A, Dimopoulos M A, Vourtsi A, Gouliamos A, Vlahos L. Bone lesions with soft-tissue mass: magnetic resonance imaging diagnosis of lymphomatous involvement of the bone marrow versus multiple myeloma and bone metastases.  Leuk Lymphoma. 1999;  34 179-184
  • 19 Eustace S, Keogh C, Blake M, Ward R J, Oder P D, Dimasi M. MR imaging of bone oedema: mechanisms and interpretation.  Clin Radiol. 2001;  56 4-12
  • 20 Lecouvet F E, Vande Berg B C, Michaux L, Malghem J, Maldague B E, Jamart J, Ferrant A, Michaux J L. Stage III multiple myeloma:clinical and prognostic value of spinal bone marrow MR imaging.  Radiology. 1998;  209 653-660
  • 21 Moulopoulos L A, Varma D G, Dimopoulos M A, Leeds N E, Kim E E, Johnston D A, Alexanian R, Libshitz H I. Multiple myeloma: spinal MR imaging in patients with untreated newly diagnosed disease.  Radiology. 1992;  185 833-840
  • 22 Yoon D Y, Choi B I, Han J K, Han M C, Park M O, Suh S J. MR findings of secondary hemochromatosis:transfusional vs erythropoietic.  J Comput Assist Tomogr. 1994;  18 416-419
  • 23 Poll L W, Koch J A, vom Dahl S, Willers R, Scherer A, Boerner D, Niederau C, Haussinger D, Modder U. Magnetic resonance imaging of bone marrow changes in Gaucher disease during enzyme replacement therapy: first German long-term results.  Skeletal Radiol. 2001;  30 496-503
  • 24 Terk M R, Dardashti S, Liebman H A. Bone marrow response in treated patients with Gaucher disease: evaluation by T1-weighted magnetic resonance images and correlation with reduction in liver and spleen volume.  Skeletal Radiol. 2000;  29 563-571

H. E. Daldrup-Link, MD

Assistant Professor of Radiology and Pediatrics · Department of Radiology · Section of Pediatric Radiology · University of California San Francisco

505 Parnassus Ave · San Francisco · CA 94143-0628

Telefon: 415-476-4328

Fax: 415-476-0616