Zusammenfassung
Das Vestibularisschwannom (Akustikusneurinom) ist ein in der Regel langsam wachsender,
gutartiger Tumor, der aus den Schwann-Zellen des VIII. Hirnnervs hervorgeht. Für die
Entstehung des Vestibularisschwannoms werden eine Reihe genetischer Faktoren diskutiert.
Neben diesen molekularen Defekten deutet vieles darauf hin, dass das bemerkenswert
variable Wachstumsverhalten der Vestibularisschwannome zusätzlich durch mitogene Stimuli
gesteuert wird. Die unterschiedliche Expression neurotropher Faktoren im Gewebe des
Vestibularisschwannoms stellt einen der möglichen Modulatoren dar, die auf die Entstehung
und das Wachstum dieser Tumoren Einfluss nehmen könnten. Die Ergebnisse immunhistochemischer
Untersuchungen belegen die Überexpression von Transforming Growth Factor-β (TGF-β)
und Glial Cell Line-Derived Neurotrophic Factor (GDNF) im Vestibularisschwannom und
liefern durch den Nachweis einer Coexpression Hinweise auf mögliche synergistische
Interaktionen dieser beiden Nervenwachstumsfaktoren. Auch eine Reihe weiterer neurotropher
Faktoren wie Nerve Growth Factor (NGF), Vascular Endothelial Growth Factor (VEGF),
Epidermal Growth Factor (EGF), Fibroblast Growth Factor (FGF), Neuregulin (NRG) und
Erythropoetin (EPO) werden im Vestibularisschwannom exprimiert und scheinen für das
biologische und klinische Verhalten dieses Tumors von Bedeutung zu sein. Die vorliegende
Arbeit gibt einen Überblick über das Expressionsmuster der einzelnen neurotrophen
Faktoren, deren biologische Eigenschaften und Charakteristika sowie deren Rolle im
Vestibularisschwannom.
Abstract
The vestibular schwannoma is a benign, slow-growing neoplasm that originates from
the neurolemmal sheath of the vestibular branch of the VIIIth cranial nerve. This
tumor entity accounts for 6 % of all intracranial tumors and the annual incidence
of newly diagnosed vestibular schwannoma is reported as 13 per million. The molecular
pathogenesis of both sporadic vestibular schwannoma and those occurring in neurofibromatosis
type II appears to be associated with an aberration of a tumor suppressor gene on
chromosome 22q12. The biological background for the various growth patterns of vestibular
schwannoma is, however, largely unknown. This differing clinical and biological behaviour
of vestibular schwannoma may be explained by the presence of neurotrophic factors.
The results of recent immunohistochemical studies demonstrate the co-expression of
transforming growth factor (TGF)-β 1 and glial cell line-derived neurotrophic factor
(GDNF) in vestibular schwannoma and suggest a trophic synergism of both neurotrophic
factors in this tumor. Moreover, expression of numerous different neurotrophic factors
has been shown in studies of nerve growth factor (NGF), vascular endothelial growth
factor (VEGF), epidermal growth factor (EGF), fibroblast growth factor (FGF), neuregulin
(NRG) and erythropoietin (EPO) indicating a biological role in development, maintainance
or growth of vestibular schwannoma. In this article, we summarize the findings on
neurotrophic factor expression and discuss their characteristics and biological role
in vestibular schwannoma.
Schlüsselwörter
Vestibularisschwannom - Akustikusneurinom - Wachstum - Wachstumsfaktoren - neurotrophe
Faktoren
Key words
Vestibular schwannoma - growth - growth factors - neurotrophic factors
Literatur
- 1
Irving R M, Moffat D A, Hardy D G, Barton D E, Xuereb J H, Maher E R.
Somatic NF2 gene mutations in familial and non-familial vestibular schwannoma.
Hum Mol Genet.
1994;
3
347-350
- 2
Moffat D A, Hardy D G, Irving R M, Viani L, Beynon G J, Baguley D M.
Referral patterns in vestibular schwannomas.
Clin Otolaryngol.
1995;
20
80-83
- 3
Ebadi M, Bashir R M, Heidrick M L, Hamada F M, Refaey H E, Hamed A, Helal G, Baxi M D,
Cerutis D R, Lassi N K.
Neurotrophins and their receptors in nerve injury and repair.
Neurochem Int.
1997;
30
347-374
- 4
Mattson M P, Cheng B, Smith-Swintosky V L.
Mechanisms of neurotrophic factor protection against calcium- and free radical-mediated
excitotoxic injury: implications for treating neurodegenerative disorders.
Exp Neurol.
1993;
124
89-95
- 5 Roberts A B, Sporn M B.
The transforming growth factors βs. In: Sporn MB, Roberts AB (eds) Handbook of experimental pharmacology, Vol 95. Heidelberg;
Springer 1991: 419-472
- 6
Pirvola U, Ylikoski J, Palgi J, Lehtonen E, Arumae U, Saarma M.
Brain-derived neurotrophic factor and neurotrophin 3 mRNAs in the peripheral target
fields of developing inner ear ganglia.
Proc Natl Acad Sci USA.
1992;
89
9915-9919
- 7
Wiechers B, Gestwa G, Mack A, Carroll P, Zenner H P, Knipper M.
A changing pattern of brain-derived neurotrophic factor expression correlates with
the rearrangement of fibers during cochlear development of rats and mice.
J Neurosci.
1999;
19
3033-3042
- 8
Ylikoski J, Pirvola U, Virkkala J, Suvanto P, Liang X Q, Magal E, Altschuler R, Miller J M,
Saarma M.
Guinea pig auditory neurons are protected by glial cell line-derived growth factor
from degeneration after noise trauma.
Hear Res.
1998;
124
17-26
- 9
Oestreicher E, Knipper M, Arnold A, Zenner H P, Felix D.
Neurotrophin 3 potentiates glutamatergic responses of IHC afferents in the cochlea
in vivo.
Eur J Neurosci.
2000;
12
1584-1590
- 10
Yancopoulos G D, Maisonpierre P C, Ip N Y, Aldrich T H, Belluscio L, Boulton T G,
Cobb M H, Squinto S P, Furth M E.
Neurotrophic factors, their receptors, and the signal transduction pathways they activate.
Cold Spring Harb Symp Quant Biol.
1990;
55
371-379
- 11
Maran A G, Wilson J A, Gaze M N.
The nature of the head and neck cancer.
Eur Arch Otorhinolaryngol.
1993;
250
127-132
- 12
Levi-Montalcini R, Hamburger V.
Selective growth stimulating effects of mouse sarcoma on the sensory and sympathetic
nervous system of the chick embryo.
J Exp Zool.
1951;
116
321-361
- 13
Shu X Q, Mendell L M.
Neurotrophins and hyperalgesia.
Proc Natl Acad Sci USA.
1999;
96
7693-7696
- 14
Levi-Montalcini R, Skaper S D, Dal Toso R, Petrelli L, Leon A.
Nerve growth factor: from neurotrophin to neurokine.
Trends Neurosci.
1996;
19
514-520
- 15
Mattson M P, Mark R J.
Excitotoxicity and excitoprotection in vitro.
Adv Neurol.
1996;
71
1-30
- 16
Fabricant R N, Todaro G J, Eldridge R.
Increased levels of a nerve-growth-factor cross-reacting protein in „central” neurofibromatosis.
Lancet.
1979;
1
4-7
- 17
Matsunaga T, Hosoda Y, Kanzaki J.
Ultrastructural localization of nerve growth factor receptor in acoustic neurinoma.
Acta Otolaryngol Suppl.
1991;
487
69-74
- 18
Raivich G, Zimmermann A, Sutter A.
The spatial and temporal pattern of beta NGF receptor expression in the developing
chick embryo.
EMBO J.
1985;
4
637-644
- 19
Yan Q, Johnson E M jr.
A quantitative study of the developmental expression of nerve growth factor (NGF)
receptor in rats.
Dev Biol.
1987;
121
139-148
- 20
Charabi S, Simonsen K, Charabi B, Jacobsen G K, Moos T, Rygaard J, Tos M, Thomsen J.
Nerve growth factor receptor expression in heterotransplanted vestibular schwannoma
in athymic nude mice.
Acta Otolaryngol.
1996;
116
59-63
- 21
Yagi M, Kanzaki S, Kawamoto K, Shin B, Shah P P, Magal E, Sheng J, Raphael Y.
Spiral ganglion neurons are protected from degeneration by GDNF gene therapy.
J Assoc Res Otolaryngol.
2000;
1
315-325
- 22
Stöver T, Gong T L, Cho Y, Altschuler R A, Lomax M I.
Expression of the GDNF family members and their receptors in the mature rat cochlea.
Brain Res Mol Brain Res.
2000;
76
25-35
- 23
Stöver T, Nam Y, Gong T L, Lomax M I, Altschuler R A.
Glial cell line-derived neurotrophic factor (GDNF) and its receptor complex are expressed
in the auditory nerve of the mature rat cochlea.
Hear Res.
2001;
155
143-151
- 24
Stewart H J, Rougon G, Dong Z, Dean C, Jessen K R, Mirsky R.
TGF-betas upregulate NCAM and L1 expression in cultured Schwann cells, suppress cyclic
AMP-induced expression of O4 and galactocerebroside, and are widely expressed in cells
of the Schwann cell lineage in vivo.
Glia.
1995;
15
419-436
- 25
Böttner M, Krieglstein K, Unsicker K.
The transforming growth factor-betas: structure, signaling, and roles in nervous system
development and functions.
J Neurochem.
2000;
75
2227-2240
- 26
Boyd F T, Massague J.
Transforming growth factor-beta inhibition of epithelial cell proliferation linked
to the expression of a 53-kDa membrane receptor.
J Biol Chem.
1989;
264
2272-2278
- 27
Laiho M, Weis M B, Massague J.
Concomitant loss of transforming growth factor (TGF)-beta receptor types I and II
in TGF-beta-resistant cell mutants implicates both receptor types in signal transduction.
J Biol Chem.
1990;
265
18 518-18 524
- 28
Rufer M, Flanders K, Unsicker K.
Presence and regulation of transforming growth factor beta mRNA and protein in the
normal and lesioned rat sciatic nerve.
J Neurosci Res.
1994;
39
412-423
- 29
Schubert D.
Synergistic interactions between transforming growth factor beta and fibroblast growth
factor regulate Schwann cell mitosis.
J Neurobiol.
1992;
23
143-148
- 30
Guenard V, Gwynn L A, Wood P M.
Transforming growth factor-beta blocks myelination but not ensheathment of axons by
Schwann cells in vitro.
J Neurosci.
1995;
15
419-428
- 31
Ridley A J, Davis J B, Stroobant P, Land H.
Transforming growth factors-beta 1 and beta 2 are mitogens for rat Schwann cells.
J Cell Biol.
1989;
109
3419-3424
- 32
Cardillo M R, Filipo R, Monini S, Aliotta N, Barbara M.
Transforming growth factor-beta1 expression in human acoustic neuroma.
Am J Otol.
1999;
20
65-68
- 33
Diensthuber M, Brandis A, Lenarz T, Stöver T.
Co-expression of transforming growth factor-beta1 and glial cell line-derived neurotrophic
factor in vestibular schwannoma.
Otol Neurotol.
2004;
25
359-365
- 34
Weerda H G, Gamberger T I, Siegner A, Gjuric M, Tamm E R.
Effects of transforming growth factor-beta1 and basic fibroblast growth factor on
proliferation of cell cultures derived from human vestibular nerve schwannoma.
Acta Otolaryngol.
1998;
118
337-343
- 35
Bizzarri M, Filipo R, Valente M G, Bernardeschi D, Ronchetti F, Monini S, Chiappini I,
Barbara M.
Release of transforming growth factor beta-1 in a vestibular schwannoma cell line.
Acta Otolaryngol.
2002;
122
785-787
- 36
Lin L F, Doherty D H, Lile J D, Bektesh S, Collins F.
GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons.
Science.
1993;
260
1130-1132
- 37
Golden J P, Baloh R H, Kotzbauer P T, Lampe P A, Osborne P A, Milbrandt J, Johnson E M
jr.
Expression of neurturin, GDNF, and their receptors in the adult mouse CNS.
J Comp Neurol.
1998;
398
139-150
- 38
Trupp M, Ryden M, Jornvall H, Funakoshi H, Timmusk T, Arenas E, Ibanez C F.
Peripheral expression and biological activities of GDNF, a new neurotrophic factor
for avian and mammalian peripheral neurons.
J Cell Biol.
1995;
130
137-148
- 39
Wefstaedt P, Scheper V, Lenarz T, Stöver T.
Brain-derived neurotrophic factor/glial cell line-derived neurotrophic factor survival
effects on auditory neurons are not limited by dexamethasone.
Neuroreport.
2005;
16
2011-2014
- 40
Jing S, Wen D, Yu Y, Holst P L, Luo Y, Fang M, Tamir R, Antonio L, Hu Z, Cupples R,
Louis J C, Hu S, Altrock B W, Fox G M.
GDNF-induced activation of the ret protein tyrosine kinase is mediated by GDNFR-alpha,
a novel receptor for GDNF.
Cell.
1996;
85
1113-1124
- 41
Treanor J J, Goodman L, de Sauvage F, Stone D M, Poulsen K T, Beck C D, Gray C, Armanini M P,
Pollock R A, Hefti F, Phillips H S, Goddard A, Moore M W, Buj-Bello A, Davies A M,
Asai N, Takahashi M, Vandlen R, Henderson C E, Rosenthal A.
Characterization of a multicomponent receptor for GDNF.
Nature.
1996;
382
80-83
- 42
Durbec P, Marcos-Gutierrez C V, Kilkenny C, Grigoriou M, Wartiowaara K, Suvanto P,
Smith D, Ponder B, Costantini F, Saarma M. et al .
GDNF signalling through the Ret receptor tyrosine kinase.
Nature.
1996;
381
789-793
- 43
Iwase T, Jung C G, Bae H, Zhang M, Soliven B.
Glial cell line-derived neurotrophic factor-induced signaling in Schwann cells.
J Neurochem.
2005;
94
1488-1499
- 44
Krieglstein K, Henheik P, Farkas L, Jaszai J, Galter D, Krohn K, Unsicker K.
Glial cell line-derived neurotrophic factor requires transforming growth factor-beta
for exerting its full neurotrophic potential on peripheral and CNS neurons.
J Neurosci.
1998;
18
9822-9834
- 45
Schober A, Hertel R, Arumae U, Farkas L, Jaszai J, Krieglstein K, Saarma M, Unsicker K.
Glial cell line-derived neurotrophic factor rescues target-deprived sympathetic spinal
cord neurons but requires transforming growth factor-beta as cofactor in vivo.
J Neurosci.
1999;
19
2008-2015
- 46
Dvorak H F, Brown L F, Detmar M, Dvorak A M.
Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability,
and angiogenesis.
Am J Pathol.
1995;
146
1029-1039
- 47
Byrne A M, Bouchier-Hayes D J, Harmey J H.
Angiogenic and cell survival functions of vascular endothelial growth factor (VEGF).
J Cell Mol Med.
2005;
9
777-794
- 48
Ferrara N, Alitalo K.
Clinical applications of angiogenic growth factors and their inhibitors.
Nat Med.
1999;
5
1359-1364
- 49
Callagy G, Dimitriadis E, Harmey J, Bouchier-Hayes D, Leader M, Kay E.
Immunohistochemical measurement of tumor vascular endothelial growth factor in breast
cancer. A more reliable predictor of tumor stage than microvessel density or serum
vascular endothelial growth factor.
Appl Immunohistochem Mol Morphol.
2000;
8
104-109
- 50
Neufeld G, Kessler O, Vadasz Z, Gluzman-Poltorak Z.
The contribution of proangiogenic factors to the progression of malignant disease:
role of vascular endothelial growth factor and its receptors.
Surg Oncol Clin N Am.
2001;
10
339-356
- 51
Eatock M M, Schatzlein A, Kaye S B.
Tumour vasculature as a target for anticancer therapy.
Cancer Treat Rev.
2000;
26
191-204
- 52
Nishikawa R, Cheng S Y, Nagashima R, Huang H J, Cavenee W K, Matsutani M.
Expression of vascular endothelial growth factor in human brain tumors.
Acta Neuropathol.
1998;
96
453-462
- 53
Charabi S.
Acoustic neuroma/vestibular schwannoma in vivo and in vitro growth models. A clinical
and experimental study.
Acta Otolaryngol Suppl.
1997;
530
1-27
- 54
Labit-Bouvier C, Crebassa B, Bouvier C, Andrac-Meyer L, Magnan J, Charpin C.
Clinicopathologic growth factors in vestibular schwannomas: a morphological and immunohistochemical
study of 69 tumours.
Acta Otolaryngol.
2000;
120
950-954
- 55
Taylor C M, Weiss J B, Lye R H.
Raised levels of latent collagenase activating angiogenesis factor (ESAF) are present
in actively growing human intracranial tumours.
Br J Cancer.
1991;
64
164-168
- 56
Brieger J, Bedavanija A, Lehr H A, Maurer J, Mann W J.
Expression of angiogenic growth factors in acoustic neurinoma.
Acta Otolaryngol.
2003;
123
1040-1045
- 57
Caye-Thomasen P, Werther K, Nalla A, Bog-Hansen T C, Nielsen H J, Stangerup S E, Thomsen J.
VEGF and VEGF receptor-1 concentration in vestibular schwannoma homogenates correlates
to tumor growth rate.
Otol Neurotol.
2005;
26
98-101
- 58
Cohen S.
The stimulation of epidermal proliferation by a specific protein (EGF).
Dev Biol.
1965;
12
394-407
- 59
Shiurba R A, Eng L F, Vogel H, Lee Y L, Horoupian D S, Urich H.
Epidermal growth factor receptor in meningiomas is expressed predominantly on endothelial
cells.
Cancer.
1988;
62
2139-2144
- 60
Sainsbury J R, Farndon J R, Needham G K, Malcolm A J, Harris A L.
Epidermal-growth-factor receptor status as predictor of early recurrence of and death
from breast cancer.
Lancet.
1987;
1
1398-1402
- 61
Quon H, Liu F F, Cummings B J.
Potential molecular prognostic markers in head and neck squamous cell carcinomas.
Head Neck.
2001;
23
147-159
- 62
Pallini R, Tancredi A, Casalbore P, Mercanti D, Larocca L M, Consales A, Lauretti L,
Fernandez E.
Neurofibromatosis type 2: growth stimulation of mixed acoustic schwannoma by concurrent
adjacent meningioma: possible role of growth factors.
J Neurosurg.
1998;
89
149-154
- 63
Sturgis E M, Woll S S, Aydin F, Marrogi A J, Amedee R G.
Epidermal growth factor receptor expression by acoustic neuromas.
Laryngoscope.
1996;
106
457-462
- 64
Itoh N, Ornitz D M.
Evolution of the Fgf and Fgfr gene families.
Trends Genet.
2004;
20
563-569
- 65
Murphy P R, Myal Y, Sato Y, Sato R, West M, Friesen H G.
Elevated expression of basic fibroblast growth factor messenger ribonucleic acid in
acoustic neuromas.
Mol Endocrinol.
1989;
3
225-231
- 66
Lefebvre P P, Staecker H, Weber T, Van de Water T R, Rogister B, Moonen G.
TGFSS1 modulates bFGF receptor message expression in cultured adult auditory neurons.
Neuroreport.
1991;
2
305-308
- 67
Flaumenhaft R, Moscatelli D, Saksela O, Rifkin D B.
Role of extracellular matrix in the action of basic fibroblast growth factor: matrix
as a source of growth factor for long-term stimulation of plasminogen activator production
and DNA synthesis.
J Cell Physiol.
1989;
140
75-81
- 68
Nair S B, Leung H Y, Ince P, Ramsden R T, Wilson J A.
Fibroblast growth factor receptor expression in vestibular schwannoma.
Clin Otolaryngol.
2000;
25
570-576
- 69
Garratt A N, Britsch S, Birchmeier C.
Neuregulin, a factor with many functions in the life of a schwann cell.
Bioessays.
2000;
22
987-996
- 70
Meyer D, Birchmeier C.
Multiple essential functions of neuregulin in development.
Nature.
1995;
378
386-390
- 71
Wolpowitz D, Mason T B, Dietrich P, Mendelsohn M, Talmage D A, Role L W.
Cysteine-rich domain isoforms of the neuregulin-1 gene are required for maintenance
of peripheral synapses.
Neuron.
2000;
25
79-91
- 72
Taveggia C, Zanazzi G, Petrylak A, Yano H, Rosenbluth J, Einheber S, Xu X, Esper R M,
Loeb J A, Shrager P, Chao M V, Falls D L, Role L, Salzer J L.
Neuregulin-1 type III determines the ensheathment fate of axons.
Neuron.
2005;
47
681-694
- 73
Hansen M R, Linthicum F H jr.
Expression of neuregulin and activation of erbB receptors in vestibular schwannomas:
possible autocrine loop stimulation.
Otol Neurotol.
2004;
25
155-159
- 74
Juul S E, Yachnis A T, Rojiani A M, Christensen R D.
Immunohistochemical localization of erythropoietin and its receptor in the developing
human brain.
Pediatr Dev Pathol.
1999;
2
148-158
- 75
Bartesaghi S, Marinovich M, Corsini E, Galli C L, Viviani B.
Erythropoietin: a novel neuroprotective cytokine.
Neurotoxicology.
2005;
26
923-928
- 76
Marti H H, Wenger R H, Rivas L A, Straumann U, Digicaylioglu M, Henn V, Yonekawa Y,
Bauer C, Gassmann M.
Erythropoietin gene expression in human, monkey and murine brain.
Eur J Neurosci.
1996;
8
666-676
- 77
Falcioni M, Taibah A, De Donato G, Piccirillo E, Russo A, Sanna M.
Fast-growing vestibular schwannoma.
Skull Base Surgery.
2000;
10
95-99
- 78
Dillard D G, Venkatraman G, Cohen C, Delgaudio J, Gal A A, Mattox D E.
Immunolocalization of erythropoietin and erythropoietin receptor in vestibular schwannoma.
Acta Otolaryngol.
2001;
121
149-152
Priv.-Doz. Dr. med. Timo Stöver
Klinik und Poliklinik für Hals-Nasen-Ohrenheilkunde ·
Carl-Neuberg-Straße 1 · 30625 Hannover
Email: stoever.timo@mh-hannover.de