Exp Clin Endocrinol Diabetes 2006; 114(5): 262-269
DOI: 10.1055/s-2006-924235
Article

J. A. Barth Verlag in Georg Thieme Verlag KG Stuttgart · New York

Did the Gradual Loss of GLUT2 Cause a Shift to Diabetic Disorders in the New Zealand Obese Mouse (NZO/Hl)?

E. Chankiewitz1 , D. Peschke1 , L. Herberg2 , I. Bazwinsky1 , E. Mühlbauer3 , H.-J. Brömme4 , E. Peschke3
  • 1Department of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
  • 2Diabetes Research Institute, Heinrich Heine University, Düsseldorf, Germany
  • 3Saxon Academy of Sciences, Leipzig, Germany
  • 4Department of Pathophysiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
Further Information

Publication History

Received: September 7, 2005 First decision: February 3, 2006

Accepted: May 10, 2006

Publication Date:
28 June 2006 (online)

Abstract

The New Zealand obese mouse (NZO/Hl) is characterised by hereditary obesity and type-2 diabetes, including insulin resistance, hyperinsulinaemia, and glucose intolerance. In other diabetic models, it has been revealed that the proper functioning of the glucose transporter isoform 2 (GLUT2) is essential for adequate secretion of insulin. The aim of this study was to compare the distribution of islet cells and GLUT2, as well as the expression of Glut2-mRNA, in the pancreas of NZO mice and metabolically unimpaired NMRI (Naval Medical Research Institute) mice. Pancreas tissue was obtained from different stages of development. For molecular determination of the expression level of Glut2-mRNA, total-RNA was extracted from the pancreas and analysed by quantitative real-time RT-PCR. All investigated NZO mice displayed increased weight, elevated hyperinsulinaemia, and slightly enhanced blood glucose levels compared with the NMRI control mice. By means of immunofluorescence microscopy drastically reduced insulin levels were detected, which might be compensated by the observed islet cell hyperplasia and hypertrophy. Furthermore, the normally peripheral localisation of the α-cells within islets was disturbed. By contrast, there were no changes in somatostatin cell distribution. However, considerable differences appeared with regard to GLUT2: whereas the β-cells of NMRI mice showed dense immunostaining of the GLUT2 transporter on the cell surface, in all age groups of NZO mice, GLUT2 on the plasma membranes was reduced and dispersed in the cytoplasm. These findings agree with the molecular biological results, which displayed decreased mRNA-expression of Glut2. In summary, the observed alteration of islet morphology and of Glut2 expression in diabetic mice complements our previous results from a superfusion protocol and further clarifies the mechanisms of diabetogenesis in NZO mice.

References

  • 1 Bielschowsky F, Bielschowsky M. The New Zealand strain of obese mice; their response to stilboestrol and to insulin.  Aust J Exp Biol Med Sci. 1956;  34 181-198
  • 2 Bielschowsky M, Bielschowsky F. A new strain of mice with hereditary obesity.  Proc Univ Otago Med School. 1953;  31 29-31
  • 3 Cameron D P, Opat F, Insch S. Studies of immunoreactive insulin secretion in NZO mice in vivo.  Diabetologia. 1974;  10 649-654
  • 4 Csernus V J, Schally A V. The dispersed cell superfusion system. Greenstein BD Neuroendocrine Research Methods, First Edition. London; Harwood Acad Publ 1991: 71-109
  • 5 de Vos A, Heimberg H, Quartier E, Huypens P, Bouwens L, Pipeleers D, Schuit F. Human and rat beta cells differ in glucose transporter but not in glucokinase gene expression.  J Clin Invest. 1995;  96 2489-2495
  • 6 Ferreras L, Kelada A S, McCoy M, Proietto J. Early decrease in GLUT4 protein levels in brown adipose tissue of New Zealand obese mice.  Int J Obes Relat Metab Disord. 1994;  18 760-765
  • 7 Guillam M T, Dupraz P, Thorens B. Glucose uptake, utilization, and signaling in GLUT2-null islets.  Diabetes. 2000;  49 1485-1491
  • 8 Herberg L, Gries F A, Hesse-Wortmann C. Effect of weight and cell size on hormone-induced lipolysis in New Zealand obese mice and American obese hyperglycemic mice.  Diabetologia. 1970 a;  6 300-305
  • 9 Herberg L, Major E, Hennigs U, Gruneklee D, Freytag G, Gries F A. Differences in the development of the obese-hyperglycemic syndrome in obob and NZO mice.  Diabetologia. 1970 b;  6 292-299
  • 10 Herberg L, Coleman D L. Laboratory animals exhibiting obesity and diabetes syndromes.  Metabolism. 1977;  26 59-99
  • 11 Huchzermeyer H, Rudorff K H, Staib W. Tierexperimentelle Untersuchungen zum Problem der Insulinresistenz bei Adipositas und Diabetes mellitus. Pathogenese des fettsüchtig-hyperglycämischen Syndroms.  Z Klin Chem Klin Biochem. 1973;  11 249-256
  • 12 Huchzermeyer H, Staib W. Investigations on carbohydrate and fat metabolism of the New Zealand Obese mice under the influence of various diets.  Environ Physiol Biochem. 1973;  3 41-52
  • 13 Johnson J H, Ogawa A, Chen L, Orci L, Newgard C B, Alam T, Unger R H. Underexpression of beta cell high Km glucose transporters in noninsulin-dependent diabetes.  Science. 1990;  250 546-549
  • 14 Johnson P R, Hirsch J. Cellularity of adipose depots in six strains of genetically obese mice.  J Lipid Res. 1972;  13 2-11
  • 15 Jörns A, Tiedge M, Sickel E, Lenzen S. Loss of GLUT2 glucose transporter expression in pancreatic beta cells from diabetic Chinese hamsters.  Virchows Arch. 1996;  428 177-185
  • 16 Jörns A, Tiedge M, Ziv E, Shafrir E, Lenzen S. Gradual loss of pancreatic beta-cell insulin, glucokinase and GLUT2 glucose transporter immunoreactivities during the time course of nutritionally induced type-2 diabetes in Psammomys obesus (sand rat).  Virchows Arch. 2002;  440 63-69
  • 17 Larkins R G, Martin F I. Selective defect in insulin release in one form of spontaneous laboratory diabetes.  Nature New Biology. 1972;  235 86-88
  • 18 Larkins R G. Defective insulin secretory response to glucose in the New Zealand obese mouse. Improvement with restricted diet.  Diabetes. 1973;  22 251-255
  • 19 Larkins R G. Defective insulin secretion in the N.Z.O. mouse: in vitro studies.  Endocrinology. 1973 b;  93 1052-1056
  • 20 Larkins R G, Simeonova L, Veroni M C. Glucose utilization in relation to insulin secretion in NZO and C57Bl mouse islets.  Endocrinology. 1980;  107 1634-1638
  • 21 Macaulay S L, Larkins R G. Impaired insulin action in adipocytes of New Zealand obese mice: a role for postbinding defects in pyruvate dehydrogenase and insulin mediator activity.  Metabolism. 1988;  37 958-965
  • 22 Mühlbauer E, Wolgast S, Finckh U, Peschke D, Peschke E. Indication of circadian oscillations in the rat pancreas.  FEBS Lett. 2004;  564 91-96
  • 23 Orci L, Thorens B, Ravazzola M, Lodish H F. Localization of the pancreatic beta cell glucose transporter to specific plasma membrane domains.  Science. 1989;  245 295-297
  • 24 Orci L, Ravazzola M, Baetens D, Inman L, Amherdt M, Peterson R G, Newgard C B, Johnson J H, Unger R H. Evidence that down-regulation of beta-cell glucose transporters in non-insulin-dependent diabetes may be the cause of diabetic hyperglycemia.  Proc Natl Acad Sci U S A. 1990;  87 9953-9957
  • 25 Peschke E, Peschke D, Hammer T, Csernus V. Influence of melatonin and serotonin on glucose-stimulated insulin release from perifused rat pancreatic islets in vitro.  J Pineal Res. 1997;  23 156-163
  • 26 Rudorff K H, Huchzermeyer H, Windeck R, Staib W. Über den Einfluß von Insulin auf die Alaninglucogenese in der isoliert perfundierten Leber von New Zealand Obese Mice.  Eur J Biochem. 1970;  16 481-486
  • 27 Schmittgen T D, Zakrajsek B A, Mills A G, Gorn V, Singer M J, Reed M W. Quantitative reverse transcription-polymerase chain reaction to study mRNA decay: comparison of endpoint and real-time methods.  Anal Biochem. 2000;  285 194-204
  • 28 Thorens B, Sarkar H K, Kaback H R, Lodish H F. Cloning and functional expression in bacteria of a novel glucose transporter present in liver, intestine, kidney, and beta-pancreatic islet cells.  Cell. 1988;  55 281-290
  • 29 Thorens B, Weir G C, Leahy J L, Lodish H F, Bonner-Weir S. Reduced expression of the liver/beta-cell glucose transporter isoform in glucose-insensitive pancreatic beta cells of diabetic rats.  Proc Natl Acad Sci U S A. 1990;  87 6492-6496
  • 30 Thorens B, Wu Y J, Leahy J L, Weir G C. The loss of GLUT2 expression by glucose-unresponsive beta cells of db/db mice is reversible and is induced by the diabetic environment.  J Clin Invest. 1992;  90 77-85
  • 31 Thorens B, Gerard N, Deriaz N. GLUT2 surface expression and intracellular transport via the constitutive pathway in pancreatic beta cells and insulinoma: evidence for a block in trans-Golgi network exit by brefeldin A.  J Cell Biol. 1993;  123 1687-1694
  • 32 Unger R H. Diabetic hyperglycemia: link to impaired glucose transport in pancreatic beta cells.  Science. 1991;  251 1200-1205
  • 33 Veroni M C, Larkins R G. Evolution of insulin resistance in isolated soleus muscle of the NZO mouse.  Horm Metab Res. 1986;  18 299-302
  • 34 Veroni M C, Proietto J, Larkins R G. Evolution of insulin resistance in New Zealand obese mice.  Diabetes. 1991;  40 1480-1487

Erik Chankiewitz

Institute of Anatomy and Cell Biology of the Martin-Luther-University Halle-Wittenberg

Grosse Steinstrasse 52

06097 Halle (Saale)

Germany

Phone: + 493455571813

Fax: + 49 34 55 57 40 53

Email: erik.chankiewitz@medizin.uni-halle.de

    >