Int J Sports Med 2007; 28(2): 157-163
DOI: 10.1055/s-2006-924209
Training & Testing

© Georg Thieme Verlag KG Stuttgart · New York

Acceptability of Power Variation during a Simulated Hilly Time Trial

G. Atkinson1 , O. Peacock2 , M. Law2
  • 1Research Institute of Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
  • 2School of Sport and Exercise Sciences, Loughborough University, Loughborough, UK
Further Information

Publication History

Accepted after revision: March 25, 2006

Publication Date:
28 November 2006 (online)


We investigated the acceptability of power variation during a cycling time trial (TT) with simulated uphill and downhill sections. Seven cyclists first completed an 800-kJ self-paced TT on a simulated flat course. An 800-kJ TT course with four sections of uphill/downhill was then modeled. Each section involved 100 kJ of cycling up a simulated gradient of 5 % followed by 100 kJ of riding down a simulated gradient of - 5 %. Participants were required to complete this simulated course using two pacing strategies; (i) at a constant power equivalent to the mean power achieved during the initial TT, and (ii) increasing power by 5 % of mean power when traveling uphill (mean duration of each climb = 714 s) and decreasing power in the downhill sections (mean duration of each descent = 190 s), so that overall mean power was equivalent to that in (i). All participants maintained this variable power strategy during the first half of the TT, but two riders could not adhere to the power variations during the final 400 kJ. Nevertheless, mean ± SD finish time for the variable power trial (3670 ± 589 s) was significantly faster than that for the constant power TT (3758 ± 645 s), the 95 % confidence interval for the percentage improvement being 0.4 to 4.3 %. Heart rate and lactate responses were highest in the initial self-paced TT and did not differ between the subsequent constant and variable power trials. Ratings of perceived exertion were also similar between trials. In our externally-valid TT, we found that some cyclists cannot fully adhere to a pacing strategy involving an approximate ± 5 % variation in mean power in parallel with gradient variation. Nevertheless, an important time saving can still result even if a variable pacing strategy is only partially adopted during a hilly time trial, so that no additional physiological strain is incurred.


  • 1 Atkinson G. Analysis of repeated measurements in physical therapy research.  Phys Ther Sport. 2001;  2 194-208
  • 2 Atkinson G. Analysis of repeated measurements in physical therapy research: multiple comparisons amongst level means and multifactorial designs.  Phys Ther Sport. 2002;  3 191-203
  • 3 Atkinson G, Brunskill A. Pacing strategies during a cycling TT with simulated headwinds and tailwinds.  Ergonomics. 2000;  43 1449-1460
  • 4 Atkinson G, Davison R C, Jeukendrup A, Passfield L. Science and cycling: current knowledge and future directions for research.  J Sports Sci. 2003;  21 767-787
  • 5 Atkinson G, Peacock O, Passfield L. The “'time-saving” hypothesis in cycling: cross-validation and prediction of practical impact.  Med Sci Sports Exerc. 2004;  36 S122
  • 6 Atkinson G, Reilly T. Effects of age and time of day on preferred work rates during prolonged exercise.  Chronobiol Int. 1994;  12 121-134
  • 7 Billat V L, Slawinski J, Danel M, Koralsztein J P. Effect of free versus constant pace on performance and oxygen kinetics in running.  Med Sci Sports Exerc. 2001;  33 2082-2088
  • 8 Borg G. Perceived exertion as an indicator of somatic stress.  Scand J Rehab Med. 1970;  2 92-98
  • 9 Carter J M, Jeukendrup A E, Jones D A. The effect of carbohydrate mouth rinse on 1-h cycle TT performance.  Med Sci Sports Exerc. 2004;  36 2107-2111
  • 10 Cherry P W, Lakomy H KA, Nevill M E, Fletcher R J. Constant external work cycle exercise - the performance and metabolic effects of all-out and even paced strategies.  Eur J Appl Physiol. 1997;  75 22-27
  • 11 De Koning J J, Bobbert M F, Foster C. Determination of optimal pacing strategy in track cycling.  Med Sci Sports Exerc. 1999;  27 1090-1095
  • 12 Di Prampero P E, Cortili P E, Mognoni P, Saibene F. Equation of motion of a cyclist.  J Appl Physiol. 1979;  47 201-206
  • 13 Firth M. From high-tech to low-tech: another look at time-trial pacing strategy.  Coaching News. 1998;  3 7-10
  • 14 Fitts R H. Cellular mechanisms of muscle fatigue.  Physiol Rev. 1994;  74 49-94
  • 15 Foster C, De Koning J J, Hettinga F, Lampen J, La Clair K L, Dodge C, Bobbert M, Porcari J P. Pattern of energy expenditure during simulated competition.  Med Sci Sports Exerc. 2003;  35 826-831
  • 16 Foster C, Snyder A C, Thompson N N, Green M A, Foley M. Effect of pacing strategy on cycle TT performance.  Med Sci Sports Exerc. 1993;  25 383-388
  • 17 Garrett A T, Boyd C. The effect of thermal stress on the physiological, thermoregulatory and metabolic responses to intermittent and continuous exercise at 30 °C and 65 % relative humidity.  J Sports Sci. 1996;  14 364
  • 18 Jeukendrup A E, Van Diemen A. Heart rate monitoring during training and competition in cyclists.  J Sports Sci. 1998;  16 S91-S99
  • 19 Liedl M A, Swain D P, Branch J D, Bryant T L, Cory L M, Leete D S. Physiological effects of constant vs. variable power during endurance cycling.  Med Sci Sports Exerc. 1999;  31 1472-1477
  • 20 Lucia A, Joyos H, Chicarro J L. Physiological response to professional road cycling: climbers vs. time trialists.  Int J Sports Med. 2000;  21 505-512
  • 21 Martin J C, Milliken D L, Cobb J E, McFadden K L, Coggan A R. Validation of a mathematical model for road cycling power.  J Appl Biomech. 1998;  14 276-291
  • 22 Maughan R. A simple, rapid method for the determination of glucose, pyruvate, alanine, 3-hydroxybutyrate and acetoacetate on a single 20 ul blood sample.  Clin Chim Acta. 1982;  122 231-240
  • 23 Nikolopoulos V, Arkinstall M J, Hawley J A. Pacing strategy in simulated cycle time-trials is based on perceived rather than actual distance.  J Sci Med Sport. 2001;  4 212-219
  • 24 Noakes T D, Gibson A S, Lambert E V. From catastrophe to complexity: a novel model of integrative central neural regulation of effort and fatigue during exercise in humans: summary and conclusions.  Br J Sports Med. 2005;  39 120-124
  • 25 Palmer G S, Borghouts L B, Noakes T D, Hawley J A. Metabolic and performance responses to constant-load vs. variable intensity exercise in trained cyclists.  J Appl Physiol. 1999;  87 1186-1196
  • 26 Stepto N K, Hawley J A, Dennis S C, Hopkins W G. Effects of different interval-training programs on cycling time-trial performance.  Med Sci Sports Exerc. 1999;  31 736-741
  • 27 Swain D P. A model for optimizing cycling performance by varying power on hills and in wind.  Med Sci Sports Exerc. 1997;  29 1104-1108
  • 28 Van Ingen Schenau G J, Dekoning J J, De Groot G. Optimisation of sprinting performance in running, cycling and speed skating.  Sports Med. 1994;  17 259-275
  • 29 Wilberg R B, Pratt J. A survey of the race profiles of cyclists in the pursuit and kilo track events.  Can J Sports Sci. 1988;  13 208-213

Greg Atkinson

Research Institute for Sport and Exercise Sciences
Liverpool John Moores University
Henry Cotton Campus

Webster Street

Liverpool L3 2ET


Phone: + 44 151 231 42 49

Fax: + 44 151 231 43 53