Semin Thromb Hemost 2005; 31(6): 641-651
DOI: 10.1055/s-2005-925470
Copyright © 2005 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

The Changing Paradigm of Thrombotic Thrombocytopenic Purpura

Thomas J. Raife1
  • 1Associate Professor, Department of Pathology, University of Iowa College of Medicine, Iowa City, Iowa
Further Information

Publication History

Publication Date:
30 December 2005 (online)

ABSTRACT

New discoveries have changed a 20-year-old concept about the mechanism of microvascular thrombosis in thrombotic thrombocytopenic purpura (TTP). The classic model of TTP pathogenesis in which ultralarge von Willebrand factor (ULvWF) is proposed to mediate spontaneous platelet aggregation in high sheer stress has evolved into a model in which vWF-platelet aggregates form on stimulated endothelial cell surfaces. The classic model of TTP pathogenesis was based on the proposed pathogenicity of plasma ULvWF in TTP microvascular thrombosis. The current model suggests that platelet binding to endothelial-bound vWF and cleavage of endothelial-bound vWF-platelet aggregates may be most critical in TTP pathogenesis and treatment. A clearer understanding of the mechanism of microvascular thrombosis in TTP will allow better targeted treatment.

REFERENCES

  • 1 Kaplan B. Commentary on the relationships between HUS and TTP. In: Kaplan B, Trompeter R, Moake J Hemolytic Uremic Syndrome and Thrombotic Thrombocytopenic Purpura. New York; Marcel Dekker 1992: 29-37
  • 2 Remuzzi G. HUS and TTP: variable expression of a singe entity.  Kidney Int. 1987;  32 292-308
  • 3 Tsai H-M. Is severe deficiency of ADAMTS-13 specific for thrombotic thrombocytopenic purpura? Yes.  J Thromb Haemost. 2003;  1 625-631
  • 4 Remuzzi G. Is ADAMTS-13 deficiency specific for thrombotic thrombocytopenic purpura? No.  J Thromb Haemost. 2003;  1 632-634
  • 5 Moake J, Rudy C, Troll J. Unusually large plasma factor VIII: von Willebrand factor multimers in chronic relapsing thrombotic thrombocytopenic purpura.  N Engl J Med. 1982;  307 1432-1435
  • 6 Asada Y, Sumiyoshi A. Pathological features of thrombotic thrombocytopenic purpura. In: Kaplan B, Trompeter R, Moake J Hemolytic Uremic Syndrome and Thrombotic Thrombocytopenic Purpura. New York; Marcel Dekker 1992: 491-498
  • 7 Moake J, Turner N, Stathopoulos N, Nolasco L, Hellums J. Involvement of large plasma von Willebrand factor (vWF) multimers and unusually large vWF forms derived from endothelial cells in shear stress-induced platelet aggregation.  J Clin Invest. 1986;  78 1456-1461
  • 8 Moake J. Haemolytic-uraemic syndrome: basic science.  Lancet. 1994;  343 393-397
  • 9 Furlan M, Robles R, Lämmle B. Partial purification and characterization of a protease from human plasma cleaving von Willebrand factor to fragments produced by in vivo proteolysis.  Blood. 1996;  87 4223-4234
  • 10 Tsai H M. Physiologic cleavage of von Willebrand factor by a plasma protease is dependent on its conformation and requires calcium ion.  Blood. 1996;  87 4235-4244
  • 11 Tsai H M, Lian E C. Antibodies to von Willebrand factor-cleaving protease in acute thrombotic thrombocytopenic purpura.  N Engl J Med. 1998;  339 1385-1394
  • 12 Furlan M, Robles R, Galbusera M et al.. Von Willebrand factor-cleaving protease in thrombotic thrombocytopenic purpura and the hemolytic uremic syndrome.  N Engl J Med. 1998;  339 1578-1584
  • 13 Levy G, Nichols W, Lian E et al.. Mutations in a member of the ADAMTS gene family cause thrombotic thrombocytopenic purpura.  Nature. 2001;  413 488-494
  • 14 Gerritsen H, Robles R, Lammle B, Furlan M. Partial amino acid sequence of purified von Willebrand factor-cleaving protease.  Blood. 2001;  98 1654-1661
  • 15 Fujikawa K, Suzuki H, McMullen B, Chung D. Purification of human von Willebrand factor-cleaving protease and its identification as a new member of the metalloproteinase family.  Blood. 2001;  98 1662-1666
  • 16 Mannucci P M. Thrombotic thrombocytopenic purpura: a simpler diagnosis at last?.  Thromb Haemost. 1999;  82 1380-1381
  • 17 Moore J, Hayward C, Warkentin T, Kelton J. Decreased von Willebrand factor protease activity associated with thrombocytopenic disorders.  Blood. 2001;  98 1842-1846
  • 18 Vesely S, George J, Lämmle B et al.. ADAMTS13 activity in thrombotic thrombocytopenic purpura-hemolytic uremic syndrome: relation to presenting features and clinical outcomes in a prospective cohort of 142 patients.  Blood. 2003;  102 60-68
  • 19 Remuzzi G, Galbusera M, Noris M et al.. von Willebrand factor cleaving protease ADAMTS13) is deficient in recurrent and familial thrombotic thrombocytopenic purpura and hemolytic uremic syndrome.  Blood. 2002;  100 778-785
  • 20 Batlle J, Lopez-Fernandez M, Lopez-Borrasca A et al.. Proteolytic degradation of von Willebrand factor after DDAVP administration in normal individuals.  Blood. 1987;  70 173-176
  • 21 Tsai H M, Kaul D, Lee T. Infusion of von Willebrand factor (vWf)-cleaving metalloproteinase enhances vWf proteolysis in mice.  Blood. 1999;  94 249a , (abst)
  • 22 Dong J, Moake J, Nolasco L et al.. ADAMTS-13 rapidly cleaves newly secreted ultralarge von Willebrand factor multimers on the endothelial surface under flowing conditions.  Blood. 2002;  100 4033-4039
  • 23 Arya M, Anvari B, Romo G et al.. Ultralarge multimers of von Willebrand factor form spontaneous high-strength bonds with the platelet glycoprotein Ib-IX complex: studies using optical tweezers.  Blood. 2002;  99 3971-3977
  • 24 Dong J, Moake J, Nolasco L et al.. ADAMTS-13 rapidly cleaves newly secreted ultralarge von Willebrand factor multimers on the endothelial surface under flowing conditions.  Blood. 2002;  100 4033-4039
  • 25 Dong J, Moake J, Bernardo A et al.. ADAMTS-13 metalloprotease interacts with the endothelial cell-derived ultra-large von Willebrand factor.  J Biol Chem. 2003;  278 29633-29639
  • 26 Padilla A, Moake J, Bernardo A et al.. P-selectin anchors newly released ultralarge von Willebrand factor multimers to the endothelial cell surface.  Blood. 2004;  103 2150-2156
  • 27 Matsumoto M, Kokame K, Soejima K et al.. Molecular characterization of ADAMTS13 gene mutations in Japanese patients with Upshaw-Schulman syndrome.  Blood. 2004;  103 1305-1310
  • 28 Kokame K, Matsumoto M, Soejima K et al.. Mutations and common polymorphisms in ADAMTS13 gene responsible for von Willebrand factor-cleaving protease activity.  Proc Natl Acad Sci USA. 2002;  99 11902-11907
  • 29 Schneppenheim R, Budde U, Oyen F et al.. Von Willebrand factor cleaving protease and ADAMTS13 mutations in childhood TTP.  Blood. 2003;  101 1845-1850
  • 30 Furlan M, Robles R, Solenthaler M, Sandoz P, Lämmle B. Deficient activity of von Willebrand factor-cleaving protease in chronic relapsing thrombotic thrombocytopenic purpura.  Blood. 1997;  89 3097-3103
  • 31 Furlan M, Robles R, Solenthaler M, Lämmle B. Acquired deficiency of von Willebrand factor-cleaving protease in a patient with thrombotic thrombocytopenic purpura.  Blood. 1998;  91 2839-2846
  • 32 Raife T, Atkinson B, Montgomery R R, Vesely S, Friedman K. Severe deficiency of von Willebrand factor-cleaving protease (ADAMTS13) activity defines a distinct population of thrombotic microangiopathy patients.  Transfusion. 2004;  44 146-150
  • 33 Moake J. Moschcowitz, multimers and metalloprotease.  N Engl J Med. 1998;  339 1629-1630
  • 34 Chow T W, Turner N A, Chintagumpala M et al.. Increased von Willebrand factor binding to platelets in single episode and recurrent types of thrombotic thrombocytopenic purpura.  Am J Hematol. 1998;  57 293-302
  • 35 Karpman D, Lethagen S, Kristoffersson A, Isaksson C, von Holmberg L. Willebrand factor mediates increased platelet retention in recurrent thrombotic thrombocytopenic purpura.  Thromb Haemost. 1997;  78 1456-1462
  • 36 Ahn Y, Jy W, Kolodny L et al.. Activated platelet aggregates in thrombotic thrombocytopenic purpura: decrease with plasma infusions and normalization in remission.  Br J Haematol. 1996;  95 408-415
  • 37 Casonato A, Pontara E, Francesca S et al.. Reduced von Willebrand factor survival in type Vicenza von Willebrand disease.  Blood. 2002;  99 180-184
  • 38 Casonato A, Pontara E, Bertomoro A et al.. Abnormally large von Willebrand factor multimers in Henoch-Schönlein purpura.  Am J Hematol. 1996;  51 7-11
  • 39 Mannucci P M, Remuzzi G, Pusineri F et al.. Deamino-8-D-arginine vasopressin shortens the bleeding time in uremia.  N Engl J Med. 1983;  308 8-12
  • 40 Fujimura Y, Matsumoto M, Yagi H, Yoshika A, Matsui T, von Titani K. Willebrand factor-cleaving protease and Upshaw-Schulman syndrome.  Int J Hematol. 2002;  75 25-34
  • 41 Galbusera M, Ruggenenti P, Noris M et al.. Alpha 1-antitrypsin therapy in a case of thrombotic thrombocytopenic purpura.  Lancet. 1995;  345 224-225
  • 42 Lester W, Williams M, Allford S, Enayat M, Machin S. Successful treatment of congenital thrombotic thrombocytopenic purpura using the intermediate purity factor VIII concentrate BPL 8Y.  Br J Haematol. 2002;  119 176-179
  • 43 Allford S, Harrison P, Lawrie A, Liessner R, Mackie I, von Machin S. Willebrand factor-cleaving protease activity in congenital thrombotic thrombocytopenic purpura.  Br J Haematol. 2000;  111 1215-1222
  • 44 Doggett T, Girdhar G, Lawshe A et al.. Selectin-like kinetics and biomechanics promote rapid platelet adhesion in flow: the Gp1bα-vWF tether bond.  Biophys J. 2002;  83 194-205
  • 45 Huizinga E, Tsuji S, Romijn R et al.. Structures of glycoprotein 1bα and its complex with von Willebrand factor A1 domain.  Science. 2002;  297 1176-1179
  • 46 Montgomery R R. Structure and function of von Willebrand factor. In: Coleman R, Hirsh J, Marder V, Clowes A, George J Hemostasis and Thrombosis. 4th ed. Philadelphia, PA; Lippincott Williams & Wilkins 2001: 249-274
  • 47 ISTH VWF SSC Information Homepage . http://Available at: www.sheffield.ac.uk/vwf Accessed November 22, 2005; 
  • 48 Tsai H, Sussman I, Nagel R. Shear stress enhances the proteolysis of von Willebrand factor in normal plasma.  Blood. 1994;  83 2171-2179
  • 49 Kroll M, Hellums J, McIntire L, Schafer A, Moake J. Platelets and shear stress.  Blood. 1996;  88 1525-1541
  • 50 Pareti F, Lattuada A, Bressi C et al.. Proteolysis of von Willebrand factor and shear stress-induced platelet aggregation in patients with aortic valve stenosis.  Circulation. 2000;  102 1290-1295
  • 51 André P, Denis C, Ware J et al.. Platelets adhere to and translocate on von Willebrand factor presented by endothelium in stimulated veins.  Blood. 2000;  96 3322-3328
  • 52 Bernardo A, Ball C, Nolasco L, Moake J, Dong J. Effects of inflammatory cytokines on the release and cleavage of the endothelial cell-derived ultralarge von Willebrand factor multimers under flow.  Blood. 2004;  104 100-106
  • 53 Shariatmadar S, Nassiri M, Vincek V. Effect of plasma exchange on cytokines measured by multianalyte bead assay in thrombotic thrombocytopenic purpura.  Am J Hematol. 2005;  79 83-88
  • 54 Kwaan H C. Role of fibrinolysis in thrombotic thrombocytopenic purpura.  Semin Hematol. 1987;  24 101-109
  • 55 Byrnes J, Moake J, Klug P, Periman P. Effectiveness of the cryosupernatant fraction of plasma in the treatment of refractory thrombotic thrombocytopenic purpura.  Am J Hematol. 1990;  34 169-174
  • 56 Moake J, Byrnes J, Troll J, Rudy C, Hong S. Effects of fresh-frozen plasma and its cryosupernatant fraction on von Willebrand factor multimeric forms in chronic relapsing thrombotic thrombocytopenic purpura.  Blood. 1985;  65 1232-1236
  • 57 Naumovski L, Pillsbury H. Treatment of thrombotic thrombocytopenic purpura with cryosupernatant.  Am J Hematol. 1991;  38 250-251
  • 58 Obrador G, Zeigler Z, Shadduck R, Rosenfeld C S, Hanrahan J. Effectiveness of cryosupernatant therapy in refractory and chronic relapsing thrombotic thrombocytopenic purpura.  Am J Hematol. 1993;  42 217-220
  • 59 Molinari E, Costamagna L, Perotti C, Isernia P, Pagani A, Salvaneschi L. Refractory thrombotic thrombocytopenic purpura: successful treatment by plasmapheresis with plasma supernatant.  Haematologica (Budap). 1993;  81 175-177
  • 60 Centurioni R, Refe C, Cecapolli A. Cryosupernatant in thrombotic thrombocytopenic purpura (TTP): is it really useful?.  Haematologica (Budap). 1997;  82 125-126
  • 61 Sgarabotto D, Vianello F, Scano F, Stefani P, Sartori R, Girolami A. Clinical and laboratoristic remission after cryosupernatant plasma in thrombotic thrombocytopenic purpura.  Haematologica (Budap). 1998;  83 569-570
  • 62 Ellis J, Theodossiou C, Schwarzenberger P. Treatment of thrombotic thrombocytopenic purpura with the cryosupernatant fraction of plasma: a case report and review of the literature.  Am J Med Sci. 1999;  318 190-193
  • 63 Bandarenko N, Brecher M. and the United States Thrombotic Thrombocytopenic Purpura Apheresis Study Group . (US TTP ASG). Multicenter survey and retrospective analysis of current efficacy of therapeutic plasma exchange.  J Clin Apheresis. 1998;  13 133-141
  • 64 Owens M, Sweeney J D, Tahhan R, Fortkolt P. Influence of type of exchange fluid on survival in therapeutic apheresis for thrombotic thrombocytopenic purpura.  J Clin Apheresis. 1995;  10 178-182
  • 65 Baeyer H. Plasmapheresis in thrombotic microangiopathy-associated syndromes: review of outcome data derived from clinical trials and open studies.  Ther Apher Dial. 2002;  6 320-328
  • 66 Rock G, Shumak K, Sutton D, Buskard N, Nair R. Cryosupernatant as replacement fluid for plasma exchange in thrombotic thrombocytopenic purpura.  Br J Haematol. 1996;  94 383-386
  • 67 Zeigler Z, Shadduck R, Gryn J et al.. Cryoprecipitate poor plasma does not improve early response in primary adult thrombotic thrombocytopenic purpura (TTP).  J Clin Apheresis. 2001;  16 19-22
  • 68 Yarranton H, Lawrie A, Purdy G, Mackie I, Machin S. Comparison of von Willebrand factor antigen, von Willebrand factor-cleaving protease and protein S in blood components used for treatment of thrombotic thrombocytopenic purpura.  Transfus Med. 2004;  14 39-44
  • 69 Roush K, Hillyer K, Barclay S et al.. vWF-cleaving metalloprotease (MP) activity: comparison of fresh frozen plasma (FFP), cryosupernatant (CS), and solvent detergent treated plasma (SDP).  Transfusion. 2001;  41S 37S , (abst)
  • 70 Rock G, Ahluwalia N, Anderson D et al.. Metalloprotease levels are variably altered in thrombotic thrombocytopenic patients at presentation and after plasma exchange with either cryosupernatant plasma or fresh frozen plasma.  Blood. 2001;  102 539a , (abst)
  • 71 Studt J-D, Hovinga J, Antoine G, Hermann M, Rieger M, Scheilflinger F. Fatal congenital thrombotic thrombocytopenic purpura with apparent ADAMTS13 inhibitor: in vitro inhibition of ADAMTS13 activity by hemoglobin.  Blood. 2005;  105 542-544
  • 72 Wada H, Kaneko T, Ohiwa M et al.. Increased levels of vascular endothelial cell markers in thrombotic thrombocytopenic purpura.  Am J Hematol. 1993;  44 101-105
  • 73 Monteagudo J, Pereira A, Reverter J C et al.. Thrombin generation and fibrinolysis in the thrombotic thrombocytopenic purpura and the hemolytic-uremic syndrome.  Thromb Haemost. 1991;  66 515-519
  • 74 Kobayashi M, Wada H, Wakita Y et al.. Decreased plasma tissue factor pathway inhibitor levels in patients with thrombotic thrombocytopenic purpura.  Thromb Haemost. 1995;  73 10-14
  • 75 Crawley J TB, Lam J, Rance J, Mollica L, O'Donnell J, Lane D. Proteolytic inactivation of ADAMTS13 by thrombin and plasmin.  Blood. 2005;  105 1085-1093
  • 76 Raife T, Friedman K, Fenwick B. Lepirudin prevents lethal effects of Shiga toxin in a canine model.  Thromb Haemost. 2004;  92 387-393
  • 77 Tsai H, Chandler L, Sarode R et al.. von Willebrand factor and von Willebrand factor-cleaving metalloproteinase activity in Escherichia coli 0157:H7-associated hemolytic uremic syndrome.  Pediatr Res. 2001;  49 653-659
  • 78 Laurence J, Mitra D, Steiner M, Staiano-Coico L, Jaffe E. Plasma from patients with idiopathic and human immunodeficiency virus-associated thrombotic thrombocytopenic purpura induces apoptosis in microvascular endothelial cells.  Blood. 1996;  87 3245-3254
  • 79 Mitra D, Jaffe E, Weksler B, Hajjar K, Soderland C, Laurence J. Thrombotic thrombocytopenic purpura and sporadic hemolytic-uremic syndrome plasmas induce apoptosis in restricted lineages of human microvascular endothelial cells.  Blood. 1997;  89 1224-1234
  • 80 Mitra D, Kim J, MacLow C, Karsan A, Laurence J. Role of caspases 1 and 3 and Bcl-2-related molecules in endothelial cell apoptosis associated with thrombotic microangiopathies.  Am J Hematol. 1998;  59 279-287
  • 81 Dang C T, Magid M S, Weksler B, Chadburn A, Laurence J. Enhanced endothelial cell apoptosis in splenic tissues of patients with thrombotic thrombocytopenic purpura.  Blood. 1999;  93 1264-1270
  • 82 Mauro M, Kim J, Costello C, Laurence J. Role of transforming growth factor β 1 in microvascular endothelial cell apoptosis associated with thrombotic thrombocytopenic purpura and hemolytic uremic syndrome.  Am J Hematol. 2001;  66 12-22
  • 83 Mauro M, Zlatopolskiy A, Raife T, Laurence J. Thienopyridine-linked thrombotic microangiopathy: association with endothelial cell apoptosis and activation of MAP kinase signaling cascades.  Br J Haematol. 2004;  124 200-210
  • 84 Conway E M, Rosenberg R D. Tumor necrosis factor suppresses transcription of the thrombomodulin gene in endothelial cells.  Mol Cell Biol. 1988;  8 5588-5592
  • 85 Moore K L, Esmon C T, Esmon N L. Tumor necrosis factor leads to the internalization and degradation of thrombomodulin from the surface of bovine aortic endothelial cells in culture.  Blood. 1989;  73 159-165
  • 86 Lentz S R, Tsiang M, Sadler J E. Regulation of thrombomodulin by tumor necrosis factor-alpha: Comparison of transcriptional and posttranscriptional mechanisms.  Blood. 1991;  77 542-550
  • 87 Raife T, Lentz S, Atkinson B, Vesely S, Hessner M. Factor V Leiden: a genetic risk factor for thrombotic microangiopathy in patients with normal von Willebrand factor-cleaving protease activity.  Blood. 2002;  99 437-442
  • 88 Raife T J, McArthur J, Kisker T, Lentz S R. Remission after 13-cis retinoic acid in a case of refractory thrombotic thrombocytopenic purpura.  Lancet. 1998;  352 454-455
  • 89 Görner M, Seggewiss R, Schlenker T, Stremmel W, Ho A. A case of severe refractory thrombotic thrombocytopenic purpura responding to treatment with 13-cis retinoic acid.  Br J Haematol. 2002;  117 249-250
  • 90 Morse D, Choi A. Heme oxygenase-1.  Am J Respir Cell Mol Biol. 2002;  27 8-16
  • 91 Exner M, Minar E, Wagner O, Schillinger M. The role of hemo oxygenase-1 promoter polymorphisms in human disease.  Free Radic Biol Med. 2004;  37 1097-1104
  • 92 Kokame K, Matsumoto M, Soejima K et al.. Mutations and common polymorphisms in ADAMTS13 gene responsible for von Willebrand factor-cleaving protease activity.  Proc Natl Acad Sci USA. 2002;  99 11902-11907
  • 93 Mannucci P M, Canciani M, Forza I, Lussana F, Lattuada A, Rossi E. Changes in health and disease of the metalloprotease that cleaves von Willebrand factor.  Blood. 2001;  98 2730-2735
  • 94 Oleksowicz L, Niyati B, DeLeon-Fernandez. Deficient activity of von Willebrand's factor-cleaving protease in patients with disseminated malignancies.  Cancer Res. 1999;  59 2244-2250
  • 95 Motto D, Ginsburg D. Targeted ADAMTS13 deficiency in mice does not result in congenital thrombocytopenic purpura (TTP). 2004 Pediatric Academic Societies Meeting May 1-4, 2004 San Francisco, CA;
  • 96 Raife T, Atkinson B, Montgomery R R, Vesely S, Friedman K D. Severe deficiency of VWF-cleaving protease (ADAMTS13) activity defines a distinct population of thrombotic microangiopathy patients.  Transfusion. 2004;  44 146-150
  • 97 Pichette V, Querin S, Schurch W, Brun G, Lehner-Netsch G, Delage J M. Familial hemolytic-uremic syndrome and homozygous factor H deficiency.  Am J Kidney Dis. 1994;  24 936-941
  • 98 Richards A, Kemp E, Liszewski M et al.. Mutations in human complement regulator, membrane cofactor protein (CD46), predispose to development of familial hemolytic uremic syndrome.  Proc Natl Acad Sci USA. 2003;  100 12966-12971
  • 99 Noris M, Ruggenenti P, Perna A et al.. Hypocomplementemia discloses genetic predisposition to hemolytic uremic syndrome and thrombotic thrombocytopenic purpura: role of factor H abnormalities.  J Am Soc Nephrol. 1999;  10 281-293
  • 100 Ying L, Katz Y, Schlesinger M et al.. Complement factor H gene mutation associated with autosomal recessive atypical hemolytic uremic syndrome.  Am J Hum Genet. 1999;  65 1538-1546
  • 101 Buddles M, Donne R, Richards A, Goodship J, Goodship T. Complement factor H gene mutation associated with autosomal recessive atypical hemolytic uremic syndrome.  Am J Hum Genet. 2000;  66 1721-1722
  • 102 Geraghty M, Perlman E, Martin L et al.. Cobalamin C defect associated with hemolytic uremic syndrome.  J Pediatr. 1992;  120 934-937
  • 103 Van Hove J, Van Damme-Lombaerts R, Grunewald S et al.. Cobalamin disorder Cbl-C presenting with late-onset thrombotic microangiopathy.  Am J Med Genet. 2002;  111 195-201

Thomas J RaifeM.D. 

Department of Pathology, University of Iowa College of Medicine

C250 GH, 200 Hawkins Drive, Iowa City, IA 52242

Email: Thomas-raife@uiowa.edu

    >