References and Notes
<A NAME="RY07505ST-1">1</A>
Present address: Sagami Chemical Research Center, Ayase 252-1193, Japan.
Reviews on atom economy:
<A NAME="RY07505ST-2A">2a</A>
Trost BM.
Science
1991,
254:
1471
<A NAME="RY07505ST-2B">2b</A>
Trost BM.
Angew. Chem., Int. Ed. Engl.
1995,
34:
259
<A NAME="RY07505ST-2C">2c</A>
Trost BM.
Acc. Chem. Res.
2002,
35:
695
Recent reviews on organocatalysis:
<A NAME="RY07505ST-3A">3a</A>
Dalko PL.
Moisan L.
Angew. Chem. Int. Ed.
2004,
43:
5138
<A NAME="RY07505ST-3B">3b</A>
Special issue on ‘Organic Catalysis’: Adv. Synth. Catal. 2004, 346.
<A NAME="RY07505ST-3C">3c</A>
Special issue on ‘Enantioselective Organocatalysis’: Acc. Chem. Res. 2004, 37.
<A NAME="RY07505ST-3D">3d</A>
Berkessel A.
Gröger H.
Asymmetric Organocatalysis - From Biomimetic Concepts to Powerful Methods for Asymmetric
Synthesis
Wiley-VCH;
Weinheim:
2005.
<A NAME="RY07505ST-3E">3e</A>
Seayad J.
List B.
Org. Biomol. Chem.
2005,
3:
719
<A NAME="RY07505ST-3F">3f</A>
Hayashi Y.
J. Synth. Org. Chem. Jpn.
2005,
63:
464
For reviews on Brønsted acid catalysis, see:
<A NAME="RY07505ST-4A">4a</A>
Schreiner PR.
Chem. Soc. Rev.
2003,
32:
289
<A NAME="RY07505ST-4B">4b</A>
Pihko PM.
Angew. Chem. Int. Ed.
2004,
43:
2062
For selected recent examples of asymmetric Brønsted acid catalysis, see:
<A NAME="RY07505ST-5A">5a</A>
Huang Y.
Unni AK.
Thadani AN.
Rawal VH.
Nature (London)
2003,
424:
146
<A NAME="RY07505ST-5B">5b</A>
Joly GD.
Jacobsen EN.
J. Am. Chem. Soc.
2004,
126:
4102
<A NAME="RY07505ST-5C">5c</A>
Thadani AN.
Stankovic AR.
Rawal VH.
Proc. Natl. Acad. Sci. U.S.A.
2004,
101:
5846
<A NAME="RY07505ST-5D">5d</A>
Du H.
Zhao D.
Ding K.
Chem.-Eur. J.
2004,
10:
5964
<A NAME="RY07505ST-5E">5e</A>
Momiyama N.
Yamamoto H.
J. Am. Chem. Soc.
2005,
127:
1080
<A NAME="RY07505ST-5F">5f</A>
Unni AK.
Takenaka N.
Yamamoto H.
Rawal VH.
J. Am. Chem. Soc.
2005,
127:
1336
<A NAME="RY07505ST-5G">5g</A>
Fuerst DE.
Jacobsen EN.
J. Am. Chem. Soc.
2005,
127:
8964
<A NAME="RY07505ST-5H">5h</A>
Rueping M.
Sugiono E.
Azap C.
Theissmann T.
Bolte M.
Org. Lett.
2005,
7:
3781
<A NAME="RY07505ST-5I">5i</A>
Zhuang W.
Hazell RG.
Jørgensen KA.
Org. Biomol. Chem.
2005,
3:
2566
<A NAME="RY07505ST-5J">5j</A>
Zhuang W.
Poulsen TB.
Jørgensen KA.
Org. Biomol. Chem.
2005,
3:
3284
<A NAME="RY07505ST-5K">5k</A>
Tonoi T.
Mikami K.
Tetrahedron Lett.
2005,
46:
6355
<A NAME="RY07505ST-5L">5l</A>
Herrera RP.
Sgarzani V.
Bernardi L.
Ricci A.
Angew. Chem. Int. Ed.
2005,
44:
6576
<A NAME="RY07505ST-6A">6a</A>
Lewis Acid Reagents: A Practical Approach
Yamamoto H.
Oxford University Press;
Oxford:
1999.
<A NAME="RY07505ST-6B">6b</A>
Lewis Acids in Organic Synthesis
Yamamoto H.
Wiley-VCH;
Weinheim:
2000.
<A NAME="RY07505ST-7A">7a</A>
Akiyama T.
Itoh J.
Yokota K.
Fuchibe K.
Angew. Chem. Int. Ed.
2004,
43:
1566
<A NAME="RY07505ST-7B">7b</A>
Akiyama T.
Morita H.
Itoh J.
Fuchibe K.
Org. Lett.
2005,
7:
2583
<A NAME="RY07505ST-8A">8a</A>
Uraguchi D.
Terada M.
J. Am. Chem. Soc.
2004,
126:
5356
<A NAME="RY07505ST-8B">8b</A>
Uraguchi D.
Sorimachi K.
Terada M.
J. Am. Chem. Soc.
2004,
126:
11804
<A NAME="RY07505ST-8C">8c</A>
Uraguchi D.
Sorimachi K.
Terada M.
J. Am. Chem. Soc.
2005,
127:
9630
For stereoselective direct Mannich reaction catalyzed by achiral Brønsted acid, see:
<A NAME="RY07505ST-9A">9a</A>
Wu Y.-S.
Cai J.
Hu Z.-Y.
Lin G.-X.
Tetrahedron Lett.
2004,
45:
8949
<A NAME="RY07505ST-9B">9b</A>
Akiyama T.
Matsuda K.
Fuchibe K.
Synlett
2005,
322
<A NAME="RY07505ST-10A">10a</A> Review:
Lucet D.
Le Gall T.
Mioskowski C.
Angew. Chem. Int. Ed.
1998,
37:
2581 ; and references therein
<A NAME="RY07505ST-10B">10b</A>
Corey EJ.
Imwinkelried R.
Pikul S.
Xiang YB.
J. Am. Chem. Soc.
1989,
111:
5493
<A NAME="RY07505ST-10C">10c</A>
Corey EJ.
Yu C.-M.
Kim SS.
J. Am. Chem. Soc.
1989,
111:
5495
<A NAME="RY07505ST-11">11</A>
Preparation of Phosphorodiamidic Acid (
1a).
N,N′-Ditosylbenzene-1,2-diamine (208.3 mg, 0.5 mmol), prepared according to the literature
procedure,
[23]
was dissolved into pyridine (1 mL) under nitrogen atmosphere. To the resulting solution
was added phosphorus oxychloride (115.0 mg, 0.75 mmol) at r.t. After being stirred
for 12 h at ambient temperature, H2O (1 mL) was poured into the reaction mixture. The resulting suspension was stirred
for additional 30 min. Then, EtOAc was added and all pyridine was removed by reverse
extraction with 1 N HCl. The organic phase was dried over Na2SO4. After being concentrated, the residue was purified by column chromatography. Compound
1a was isolated as a white solid in 90% yield. 1H NMR (270 MHz, DMSO-d
6,): δ = 2.30 (6 H, s), 6.79-6.86 (2 H, m), 7.17-7.24 (2 H, m), 7.31 (4 H, d, J = 8.4 Hz), 8.02 (4 H, d, J = 8.4 Hz). 13C NMR (67.8 MHz, DMSO-d
6): δ = 21.0, 113.1 (d, J
P-C = 5.4 Hz), 122.9, 126.8 (t, J
P-C = 10.3 Hz), 127.9, 129.5, 135.7, 144.2. IR (KBr): 3425, 3072, 1375, 1175, 1119 cm-1. HRMS (ESI): m/z calcd for C20H19N2O6PS2 [M - H]-: 477.0349. Found: 477.0351.
<A NAME="RY07505ST-12A">12a</A> For an excellent review of organocatalytic asymmetric direct Mannich reactions,
see:
Córdova A.
Acc. Chem. Res.
2004,
37:
102
See also:
<A NAME="RY07505ST-12B">12b</A>
Poulsen TB.
Alemparte C.
Saaby S.
Bella M.
Jørgensen KA.
Angew. Chem. Int. Ed.
2005,
44:
2896
<A NAME="RY07505ST-12C">12c</A>
See ref. 3d, Chapter 5.2.
For metal complex-mediated asymmetric direct Mannich reactions, see:
<A NAME="RY07505ST-13A">13a</A>
Juhl K.
Gathergood N.
Jørgensen KA.
Angew. Chem. Int. Ed.
2001,
40:
2995
<A NAME="RY07505ST-13B">13b</A>
Trost BM.
Terrell LR.
J. Am. Chem. Soc.
2003,
125:
338
<A NAME="RY07505ST-13C">13c</A>
Matsunaga S.
Kumagai N.
Harada S.
Shibasaki M.
J. Am. Chem. Soc.
2003,
125:
4712
<A NAME="RY07505ST-13D">13d</A>
Bernardi L.
Gothelf AS.
Hazell RG.
Jørgensen KA.
J. Org. Chem.
2003,
68:
2583
<A NAME="RY07505ST-13E">13e</A>
Marigo M.
Kjærsgaard A.
Juhl K.
Gathergood N.
Jørgensen KA.
Chem.-Eur. J.
2003,
9:
2359
<A NAME="RY07505ST-13F">13f</A>
Matsunaga S.
Yoshida T.
Morimoto H.
Kumagai N.
Shibasaki M.
J. Am. Chem. Soc.
2004,
126:
8777
<A NAME="RY07505ST-13G">13g</A>
Hamashima Y.
Sasamoto N.
Hotta D.
Somei H.
Umebayashi N.
Sodeoka M.
Angew. Chem. Int. Ed.
2005,
44:
1525
<A NAME="RY07505ST-13H">13h</A>
Yoshida T.
Morimoto H.
Kumagai N.
Matsunaga S.
Shibasaki M.
Angew. Chem. Int. Ed.
2005,
44:
3470
<A NAME="RY07505ST-13I">13i</A>
Kjærsgaard A.
Jørgensen KA.
Org. Biomol. Chem.
2005,
3:
804
<A NAME="RY07505ST-13J">13j</A>
Kundsen KR.
Jørgensen KA.
Org. Biomol. Chem.
2005,
3:
1362
<A NAME="RY07505ST-14">14</A>
Greene TW.
Wuts PGM.
Protective Groups in Organic Synthesis
3rd ed.:
John Wiley and Sons, Inc.;
New York:
1999.
p.494-653
<A NAME="RY07505ST-15">15</A>
Nakamura Y.
Matsubara R.
Kobayashi S.
Org. Lett.
2003,
5:
2481
<A NAME="RY07505ST-16">16</A>
The distribution of keto-enol tautomers of 3 in CDCl3 was measured by 1H NMR. The percentages of the enol form are listed as follows: 3a: 72%; 3b: 61%; 3c: >98%; 3d: 6%; 3e: 6%; 3f: 21%; 3g: <2%.
<A NAME="RY07505ST-17">17</A>
Although in the case of unsymmetrical 1,3-dicarbonyl compounds, keto esters 3d,e and keto amide 3f, the diastereomeric mixtures were obtained, their ratios were changed during the
course of experiment.
For binaphthalene bis(sulfonamide) derivatives as a chiral ligand for metal-based
catalysts, see:
<A NAME="RY07505ST-18A">18a</A>
Terada M.
Motoyama Y.
Mikami K.
Tetrahedron Lett.
1994,
35:
6693
<A NAME="RY07505ST-18B">18b</A>
Mikami K.
Motoyama Y.
Terada M.
Inorg. Chim. Acta
1994,
222:
71
<A NAME="RY07505ST-18C">18c</A>
Denmark SE.
Christenson BL.
O’Connor SP.
Tetrahedron Lett.
1995,
36:
2219
<A NAME="RY07505ST-18D">18d</A>
Shi M.
Sui W.-S.
Chirality
2000,
12:
574
<A NAME="RY07505ST-18E">18e</A>
Ooi T.
Saito A.
Maruoka K.
J. Am. Chem. Soc.
2003,
125:
3220
<A NAME="RY07505ST-18F">18f</A>
Yus M.
Ramon DJ.
Prieto O.
Tetrahedron: Asymmetry
2003,
14:
1103
<A NAME="RY07505ST-18G">18g</A>
Ooi T.
Ohmatsu K.
Uraguchi D.
Maruoka K.
Tetrahedron Lett.
2004,
45:
4481
<A NAME="RY07505ST-18H">18h</A>
Akiyama K.
Mikami K.
Tetrahedron Lett.
2004,
45:
7217
For binaphthalene-derived diazaphosphepines as a chiral ligand for metal-based catalysts,
see:
<A NAME="RY07505ST-19A">19a</A>
Reetz MT.
Oka H.
Goddard R.
Synthesis
2003,
1809
<A NAME="RY07505ST-19B">19b</A>
Denmark SE.
Fan Y.
J. Am. Chem. Soc.
2003,
125:
7825
<A NAME="RY07505ST-19C">19c</A>
Monti C.
Gennari C.
Steele RM.
Piarulli U.
Eur. J. Org. Chem.
2004,
3557
<A NAME="RY07505ST-19D">19d</A>
Denmark SE.
Beutner GL.
Wynn T.
Eastgate MD.
J. Am. Chem. Soc.
2005,
127:
3774
<A NAME="RY07505ST-20">20</A>
Compound (R)-1b: [α]D 150 (c 0.99, CHCl3). 1H NMR (270 MHz, DMSO-d
6): δ = 3.33 (6 H, s), 6.23 (4 H, d, J = 8.1 Hz), 6.74 (2 H, d, J = 7.6 Hz), 7.01 (4 H, d, J = 8.1 Hz), 7.10 (2 H, t, J = 7.6 Hz), 7.37 (2 H, t, J = 7.6 Hz), 7.43 (2 H, d, J = 7.6 Hz), 7.73 (2 H, d, J = 7.6 Hz), 7.75 (2 H, d, J = 7.6 Hz). 13C NMR (67.8 MHz, DMSO-d
6): δ = 20.9, 125.3, 125.4, 125.8, 127.1, 127.4 (d, J
P-C = 1.0 Hz), 127.8, 128.1 (t, J
P-C = 1.5 Hz), 130.8 (t, J
P-C = 1.5 Hz), 131.1 (d, J
P-C = 1.0 Hz), 131.5 (d, J
P-C = 1.0 Hz), 132.1, 134.5-134.6 (m), 137.6-137.8 (m), 140.6 (d, J
P-C = 4.9 Hz). IR (KBr): 3458, 3055, 2910, 1344, 1171, 1113 cm-1. HRMS (ESI): m/z calcd for C34H27N2O6PS2 [M - H]-: 653.0975. Found 653.0975.
<A NAME="RY07505ST-21">21</A>
Compound 4e: white solid; R
f
= 0.20 (hexane-EtOAc, 2:1). HPLC analysis Chiralpak AD-H (hexane-EtOH, 80:20, 1.0
mL/min, 254 nm, 10 °C) 19.1 (S), 27.3 (R) min. 1H NMR (270 MHz, CDCl3): δ = 2.12 (3 H, s), 2.32 (3 H, s), 4.41 (1 H, d, J = 4.9 Hz), 6.06 (1 H, dd, J = 9.2, 4.9 Hz), 7.22-7.54 (8 H, m), 7.77-7.86 (2 H, m), 7.97 (1 H, br d, J = 9.2 Hz). 13C NMR (67.8 MHz, CDCl3): δ = 29.8, 31.6, 52.3, 70.0, 126.3, 127.1, 127.8, 128.6, 128.8, 131.8, 133.7, 139.2,
166.8, 202.6, 205.9. IR (KBr): 3369, 3032, 2918, 1724, 1639, 1522 cm-1. HRMS (ESI): m/z calcd for C19H19NaNO3 [M + Na]+: 332.1257. Found: 332.1260.
<A NAME="RY07505ST-22">22</A>
The absolute configuration of Bz-product 4e was determined after transformation into the stereochemically known N-benzoylphenylglycine methyl ester. The stereochemical determination of 4a and the experimental procedure for derivatization of 4 to N-protected glycine methyl ester were described in ref. 8a.
<A NAME="RY07505ST-23">23</A>
Dubey PK.
Kulkarni SM.
Kumar RV.
Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem.
2002,
41:
1305