References
<A NAME="RG28705ST-1">1</A>
Patel M.
Ko SS.
McHugh RJ.
Markwalder JA.
Srivastava AS.
Cordova BC.
Klabe RM.
Erickson-Viitanen S.
Trainor GL.
Seitz SP.
Bioorg. Med. Chem. Lett.
1999,
9:
2805
<A NAME="RG28705ST-2">2</A>
Patel M.
McHugh RJ.
Cordova BC.
Klabe RM.
Erickson-Viitanen S.
Trainor GL.
Koo SS.
Bioorg. Med. Chem. Lett.
1999,
9:
3221
<A NAME="RG28705ST-3">3</A>
Waxman L.
Darke PL.
Antiviral Chem. Chemother.
2000,
11:
1
<A NAME="RG28705ST-4">4</A>
Klasek A.
Koristek K.
Polis J.
Kosmrij J.
Tetrahedron
2000,
56:
1551
<A NAME="RG28705ST-5">5</A>
Girgis AS.
Pharmazie
2000,
426
<A NAME="RG28705ST-6">6</A>
Mindl J.
Hrabik O.
Sterba V.
Kavalek J.
Collect. Czech. Chem. Commun.
2000,
65:
1262
<A NAME="RG28705ST-7">7</A>
Ugi I.
Domling A.
Endeavour
1994,
18:
115
<A NAME="RG28705ST-8">8</A>
Heck S.
Domling A.
Synlett
2000,
424
<A NAME="RG28705ST-9">9</A>
Kraus GA.
Nagy JO.
Tetrahedron
1985,
41:
3537
<A NAME="RG28705ST-10">10</A>
Posner GH.
Chem. Rev.
1986,
86:
831
<A NAME="RG28705ST-11">11</A>
Ugi I.
J. Prakt. Chem.
1997,
339:
499
<A NAME="RG28705ST-12">12</A>
Bienayme H.
Bourzid K.
Tetrahedron Lett.
1988,
39:
2735
<A NAME="RG28705ST-13">13</A>
Ziegler T.
Kaiser HJ.
Schlomer R.
Koch C.
Tetrahedron
1999,
55:
8397
<A NAME="RG28705ST-14">14</A>
Caddick S.
Tetrahedron
1995,
51:
10403
<A NAME="RG28705ST-15">15</A>
Loupy A.
Petit A.
Hamelin J.
Texier-Bouller F.
Jacquault P.
Mathe D.
Synthesis
1998,
1213
<A NAME="RG28705ST-16">16</A>
Varma RS.
Green Chem.
1999,
1:
43
<A NAME="RG28705ST-17">17</A>
Lidstrom P.
Tierney J.
Wathey B.
Westman J.
Tetrahedron
2001,
57:
9225
<A NAME="RG28705ST-18">18</A>
Perreux L.
Loupy A.
Tetrahedron
2001,
57:
9199
<A NAME="RG28705ST-19">19</A>
Balogh M.
Laszlo P.
Organic Chemistry Using Clays
Springer;
Berlin:
1993.
<A NAME="RG28705ST-20">20</A>
Chisem J.
Chisem IC.
Rafelt JS.
Macquarrie DJ.
Clark JH.
Chem. Commun.
1997,
2203
<A NAME="RG28705ST-21">21</A>
Meshram HM.
Shekhar KC.
Ganesh YSS.
Yadav JS.
Synlett
2000,
1273
<A NAME="RG28705ST-22">22</A>
Yadav LDS.
Singh A.
Tetrahedron Lett.
2003,
44:
5637
<A NAME="RG28705ST-23">23</A>
Yadav LDS.
Dubey S.
Yadav BS.
Tetrahedron
2003,
59:
5411
<A NAME="RG28705ST-24">24</A>
Yadav LDS.
Kapoor R.
Tetrahedron Lett.
2003,
44:
8951
<A NAME="RG28705ST-25">25</A>
Yadav LDS.
Singh S.
Synthesis
2003,
63
<A NAME="RG28705ST-26">26</A>
O’Callaghan CN.
McMurry TBM.
J. Chem. Res., Synop.
1997,
78 ; J. Chem. Res. Miniprint 1997, 643
<A NAME="RG28705ST-27">27</A>
Bagnell L.
Cablewski T.
Strauss CR.
Trainor RW.
J. Org. Chem.
1996,
61:
7355
<A NAME="RG28705ST-28">28</A>
Varma RS.
Kumar D.
Liesen PJ.
J. Chem. Soc., Perkin Trans. 1
1998,
4093
<A NAME="RG28705ST-29">29</A>
Bandgar BP.
Uppalla LS.
Kurule DS.
Green Chem.
1999,
1:
243
<A NAME="RG28705ST-30">30</A>
Varma RS.
Dahiya R.
J. Org. Chem.
1998,
63:
8038
<A NAME="RG28705ST-31">31</A>
Yadav LDS.
Saigal S.
Pal DR.
J. Chem. Res., Synop.
1998,
307
<A NAME="RG28705ST-32">32</A>
A CEM Discover Focused Microwave Synthesis System operating at 2450 MHz was used at
an output of 560 W for all the experiments. The temperature (85 ± 5 °C) was monitored
by a built-in infrared sensor and the irradiation time was set at 2 min.
<A NAME="RG28705ST-33">33</A>
General Procedure for the Synthesis of 3,4-Dihydro-4-amino-3-aryl-2
H
-benz[
e
]-1,3-oxazin-2-ones 8a-u.
To a solution of salicylaldehyde 1 (5 mmol) and substituted aryl/alkylurea 2 (5 mmol) in a small amount of CH2Cl2 (10 mL) was added ammonium acetate or aniline (5 mmol) and montmorillonite K-10 clay
(0.50 g) mixed thoroughly and dried under reduced pressure. The contents were taken
in a 100 mL conical flask and subjected to MW irradiation at 560 W for 2 min. The
reaction mixture was then thoroughly mixed outside the MW oven for 2 min and again
irradiated for another 2 min. This intermittent irradiation mixing cycle was repeated
for a total irradiation time (Table
[2]
). After completion of the reaction as indicated by TLC (hexane-EtOAc, 8:2, v/v),
the product was extracted with CH2Cl2 (3 × 80 mL), the extract was filtered and the filtrate was evaporated under reduced
pressure to leave the crude product which was recrystallized from EtOH to give an
analytically pure sample of 8 as yellowish needles.
<A NAME="RG28705ST-34">34</A>
Characterization Data for Representative Compounds.
Compound 8a: yellowish needles; mp 125-126 °C. IR (KBr): ν = 3360, 3000, 1715, 1592, 1570, 1449
cm-1. 1H NMR (400 MHz, DMSO-d
6
): δ = 3.06 (br s, 2 H, exchanges with D2O), 6.75 (t, 1 H, J = 8.0 Hz), 7.19-7.87 (m, 9 H). 13C NMR (100 MHz, DMSO-d
6
): δ = 78.0, 113.1, 114.2, 118.6, 120.3, 122.6, 129.0, 129.4, 130.2, 150.0, 166.4,
177.0. MS (EI): m/z = 240 [M+]. Anal. Calcd for C14H12N2O2: C, 69.99; H, 5.03; N, 11.66. Found: C, 69.89; H, 5.23; N, 11.46.
Compound 8h: yellowish needles; mp 116-117 °C. IR (KBr): ν = 3364, 3012, 1700, 1592, 1571, 1450
cm-1. 1H NMR (400 MHz, DMSO-d
6
): δ = 2.31 (s, 3 H), 3.05 (br s, 2 H, exchanges with D2O), 6.75 (t, 1 H, J = 7.9 Hz), 7.14-7.84 (m, 8 H). 13C NMR (100 MHz DMSO-d
6
): δ = 21.2, 78.2, 113.0, 114.0, 118.2, 120.5, 122.5, 128.7, 129.5, 130.4 150.1, 166.0,
177.0. MS (EI): m/z = 254 [M+]. Anal. Calcd for C15H14N2O2: C, 70.85; H, 5.55; N, 11.02. Found: C, 70.55; H, 5.85; N, 10.82.
Compound 8r: yellowish needles; mp 210-211 °C. IR (KBr): ν = 3370, 3016, 1720, 1598, 1577, 1454
cm-1. 1H NMR (400 MHz, DMSO-d
6
): δ = 1.09 (t, 3 H, J = 6.8 Hz), 2.57 (q, 2 H, J = 6.8 Hz), 3.09 (br s, 2 H, exchanges with D2O), 6.79 (t, 1 H, J = 8.0 Hz), 7.86 (d, 1 H, J = 2.5 Hz), 8.23 (d, 1 H, J = 2.5, 2.5 Hz). 13C NMR (100 MHz, DMSO-d
6
): δ = 13.9, 58.5, 78.9, 118.6, 122.4, 129.5, 130.7, 150.6, 166.3, 177.3. MS (EI):
m/z = 350 [M+]. Anal. Calcd for C10H10N2O2Br2: C, 34.32; H, 2.88; N, 8.00. Found: C, 34.42; H, 3.18; N, 8.10.,