References
<A NAME="RG29507ST-1A">1a</A>
Cimanga K.
De Bruyne T.
Pieters L.
Clayes M.
Vlietinck A.
Tetrahedron Lett.
1996,
37:
1703
<A NAME="RG29507ST-1B">1b</A>
Sharaf MHM.
Schiff PL.
Tackie AN.
Phoebe CH.
Martin GE.
J. Heterocycl. Chem.
1996,
33:
239
<A NAME="RG29507ST-1C">1c</A>
Pousset J.-L.
Martin M.-T.
Jossang A.
Bodo B.
Phytochemistry
1995,
39:
735
<A NAME="RG29507ST-2A">2a</A>
Kansal VK.
Potier P.
Tetrahedron
1986,
42:
2389
<A NAME="RG29507ST-2B">2b</A>
Devarj R.
Cushman M.
Bioorg. Med. Chem. Lett.
1997,
7:
369
<A NAME="RG29507ST-3">3</A>
Molina A.
Vaquero JJ.
Garcia-Navio JL.
Alvarez-Builla J.
Pascual-Teresa B.
Gago F.
Rodrigo MM.
Ballesteros M.
J. Org. Chem.
1996,
61:
5587
<A NAME="RG29507ST-4">4</A>
Cimanga K.
De Bruyne T.
Pieters L.
Vlietinck AJ.
Turger CA.
J. Nat. Prod.
1997,
60:
688
<A NAME="RG29507ST-5A">5a</A>
Peczynska-Czoch W.
Pognan F.
Kaczmarek L.
Boratynski J.
J. Med. Chem.
1994,
37:
3503
<A NAME="RG29507ST-5B">5b</A>
Kaczmarek L.
Balicki R.
Nantka-Namirski P.
Peczynska-Czoch W.
Mordarski M.
Arch. Pharm.
1998,
321:
463
<A NAME="RG29507ST-6A">6a</A>
Molina P.
Alajarin M.
Vidal A.
J. Chem. Soc., Chem. Commun.
1990,
1277
<A NAME="RG29507ST-6B">6b</A>
Molina P.
Alajarin M.
Vidal A.
Sanchez-Andrada P.
J. Org. Chem.
1992,
57:
929
<A NAME="RG29507ST-6C">6c</A>
Chen Y.-L.
Hung H.-M.
Lu C.-M.
Li K.-C.
Tzeng C.-C.
Bioorg. Med. Chem.
2004,
12:
6539
<A NAME="RG29507ST-6D">6d</A>
Sundaram GSM.
Venkatesh C.
Syam Kumar UK.
Ila H.
Junjappa H.
J. Org. Chem.
2004,
69:
5760
<A NAME="RG29507ST-7">7</A>
Molina P.
Fresneda PM.
Delgado S.
Synthesis
1999,
326
<A NAME="RG29507ST-8">8</A>
Timari G.
Soos T.
Hajos G.
Synlett
1997,
1067
<A NAME="RG29507ST-9">9</A>
Shi C.
Zhang Q.
Wang KK.
J. Org. Chem.
1999,
64:
925
<A NAME="RG29507ST-10">10</A>
Kaczmarek L.
Peczynska-Czoch W.
Osiadacz J.
Mordarski M.
Sokalski WA.
Boratynski J.
Marcinkowska E.
Glazman-Kusnierczyk H.
Radzikowski C.
Bioorg. Med. Chem.
1999,
7:
2457
<A NAME="RG29507ST-11A">11a</A>
Engqvist R.
Bergman J.
Org. Prep. Proced. Int.
2004,
36:
386
<A NAME="RG29507ST-11B">11b</A>
Alajarin M.
Molina P.
Vidal A.
J. Nat. Prod.
1997,
60:
747
<A NAME="RG29507ST-12A">12a</A>
Takechi N.
Ait-Mohand S.
Médebielle M.
Dolbier WR.
Tetrahedron Lett.
2002,
43:
4317
<A NAME="RG29507ST-12B">12b</A>
Ait-Mohand S.
Takechi N.
Médebielle M.
Dolbier WR.
Org. Lett.
2001,
3:
4271
<A NAME="RG29507ST-12C">12c</A>
Médebielle M.
Keirouz R.
Okada E.
Ashida T.
Synlett
2001,
821
<A NAME="RG29507ST-12D">12d</A>
Dolbier WR.
Médebielle M.
Ait-Mohand S.
Tetrahedron Lett.
2001,
42:
4811
<A NAME="RG29507ST-13">13</A>
Giuglio-Tonolo G.
Terme T.
Médebielle M.
Vanelle P.
Tetrahedron Lett.
2003,
44:
6433
<A NAME="RG29507ST-14">14</A>
Giuglio-Tonolo G.
Terme T.
Médebielle M.
Vanelle P.
Tetrahedron Lett.
2004,
45:
5121
<A NAME="RG29507ST-15">15</A>
Giuglio-Tonolo G.
Terme T.
Vanelle P.
Synlett
2005,
251
<A NAME="RG29507ST-16A">16a</A>
Terme T.
Crozet MP.
Maldonado J.
Vanelle P. In
Electron Transfer Reactions in Organic Synthesis
Vanelle P.
Research Signpost;
Trivandrum:
2002.
p.1
<A NAME="RG29507ST-16B">16b</A>
Terme T.
Beziane A.
Vanelle P.
Lett. Org. Chem.
2005,
2:
367
<A NAME="RG29507ST-17A">17a</A>
Amiri-Attou O.
Terme T.
Vanelle P.
Molecules
2005,
10:
545
<A NAME="RG29507ST-17B">17b</A>
Kantevari S.
Narasimhaji CV.
Mereyala HB.
Tetrahedron
2005,
61:
5849
<A NAME="RG29507ST-18">18</A>
General Procedure for the Reaction of
o
-Nitrobenzyl Chloride (1a-e) and 1-Methyl Isatin (2), Using TDAE.
Into a two-necked flask equipped with a drying tube (silica gel) and a nitrogen inlet
was added 6 mL of anhyd DMF solution of o-nitrobenzyl chloride (1a-e, 0.4 g, 1.8 mmol) and 1-methyl isatin (2, 0.8 g, 5.4 mmol, 3 equiv) at -20 °C. The solution was stirred and maintained at
this temperature for 30 min and then the TDAE (0.42 g, 1.8 mmol) was added dropwise
(via syringe). A red color immediately developed with the formation of a fine, white
precipitate. The solution was vigorously stirred at -20 °C for 1 h and then warmed
up to r.t. for 2 h. After this time TLC analysis (CH2Cl2) clearly showed that compounds (1a-e) was totally consumed. The orange-red turbid solution was filtered (to remove the
octamethyl-oxamidinium dichloride) and hydrolyzed with 80 mL of H2O. The aqueous solution was extracted with CHCl3 (3 × 40 mL), the combined organic layers washed with H2O (3 × 40 mL) and dried over MgSO4. Evaporation of the solvent left an orange viscous liquid as crude product. Purification
by silica gel chromatography (CH2Cl2) and recrystallization from EtOH gave the corresponding α-hydroxy derivatives.
New products: compound 3a: white solid; mp 176 °C. 1H NMR (200 MHz, DMSO-d
6): δ = 3.01 (s, 3 H), 3.25 (d, J
AB
= 13.4 Hz, 1 H), 3.65 (d, J
AB
= 13.4 Hz, 1 H), 6.20 (br s, 1 H), 6.70 (m, 1 H), 6.92 (m, 2 H), 7.26 (m, 2 H), 7.50
(s, 2 H), 7.78 (m, 1 H). 13C NMR (50 MHz, DMSO-d
6): δ = 25.9, 38.9, 75.6, 108.5, 122.3, 123.8, 124.2, 128.3, 129.4, 130.3, 132.1, 134.0,
142.8, 150.6, 176.8. The C-nitro was not observed in this experiment. Anal. Calcd
for C16H14N2O4: C, 64.42; H, 4.73; N, 9.39. Found: C, 64.36; H, 4.80; N, 9.50.
Compound 3b: yellow solid; mp 201 °C. 1H NMR (200 MHz, DMSO-d
6): δ = 2.31 (s, 3 H), 3.01 (s, 3 H), 3.25 (d, J
AB
= 13.3 Hz, 1 H), 3.64 (d, J
AB
= 13.3 Hz, 1 H), 6.19 (br s, 1 H), 6.75 (m, 1 H), 6.92 (m, 2 H), 7.10 (s, 1 H), 7.26
(m, 2 H), 7.71 (m, 1 H). 13C NMR (50 MHz, DMSO-d
6): δ = 20.9, 25.9, 39.1, 75.7, 108.4, 122.2, 123.7, 124.4, 128.6, 129.3, 129.5, 130.4,
134.5, 142.6, 142.8, 148.2, 176.9. Anal. Calcd for C17H16N2O4: C, 65.38; H, 5.16; N, 8.97. Found: C, 65.60; H, 5.25; N, 9.08.
Compound 3c: yellow solid; mp 206 °C. 1H NMR (200 MHz, DMSO-d
6): δ = 3.02 (s, 3 H), 3.24 (d, J
AB
= 13.5 Hz, 1 H), 3.54 (d, J
AB
= 13.5 Hz, 1 H), 6.22 (br s, 1 H), 6.75 (m, 1 H), 6.94 (m, 2 H), 7.29 (m, 2 H), 7.67
(m, 1 H), 7.93 (m, 1 H). 13C NMR (50 MHz, DMSO-d
6): δ = 25.9, 38.4, 75.2, 108.6, 122.4, 123.7, 124.0, 128.5, 129.4, 130.3, 131.9, 132.2,
135.7, 142.7, 151.0, 176.6. Anal. Calcd for C16H13ClN2O4: C, 57.75; H, 3.94; N, 8.42. Found: C, 57.90; H, 4.00; N, 8.49.
Compound 3d: yellow solid; mp 233 °C. 1H NMR (200 MHz, DMSO-d
6): δ = 2.98 (s, 3 H), 3.36 (d, J
AB
= 13.3 Hz, 1 H), 3.63 (d, J
AB
= 13.3 Hz, 1 H), 3.70 (s, 3 H), 3.75 (s, 3 H), 6.19 (br s, 1 H), 6.76 (s, 1 H), 6.91
(m, 3 H), 7.25 (m, 1 H), 7.39 (s, 1 H). 13C NMR (50 MHz, DMSO-d
6): δ = 25.9, 38.9, 55.9, 56.0, 76.0, 107.9, 108.5, 115.6, 123.2, 123.8, 129.3, 130.5,
142.6, 142.9, 147.3, 151.3, 177.0. The C-nitro was not observed in this experiment.
Anal. Calcd for C18H18N2O6: C, 60.33; H, 5.06; N, 7.82. Found: C, 60.37; H, 5.16; N, 7.80.
<A NAME="RG29507ST-19">19</A>
Artico M.
Silvestri R.
Pagnozzi E.
Stefancich G.
Massa S.
Loi AG.
Putzolu M.
Corrias S.
Spiga MG.
La Colla P.
Bioorg. Med. Chem.
1996,
837
<A NAME="RG29507ST-20">20</A>
General Procedure for Reduction-Cyclization-Double Dehydration Step.
Iron powder (1.8 g, 33.6 mmol, 28 equiv) was added over a period of 0.5 h to a stirred
solution of the appropriate starting material (3a-e,1.2 mmol) in glacial AcOH (68 mL) while heating at 110 °C, then the mixture was maintained
at 110 °C for 48 h. After filtration on Celite® the solvent was evaporated under reduced pressure and the residue was neutralized
with an aq solution of NaHCO3. After extraction with CHCl3 (3 × 30 mL), the combined organic layers washed with H2O (3 × 40 mL) and dried over MgSO4. Evaporation of the solvent left a viscous liquid as crude product. Purification
by silica gel chromatography (CH2Cl2) and recrystallization from EtOH gave the corresponding 6-methyl-6H-indolo[2,3-b]quinolines (4a-e).
New products: compound 4a: orange solid; mp 57 °C. 1H NMR (200 MHz, CDCl3): δ = 3.82 (s, 3 H), 7.27 (m, 2 H), 7.50 (m, 2 H), 7.74 (m, 1 H), 7.90 (m, 1 H),
8.00 (m, 1 H), 8.17 (m, 1 H), 8.44 (s, 1 H). 13C NMR (50 MHz, CDCl3): δ = 27.4, 108.4, 117.8, 119.6, 120.1, 121.1, 122.6, 123.9, 126.9, 127.3, 127.8,
128.3, 128.6, 142.5, 146.6, 152.4. Anal. Calcd for C16H12N2: C, 82.73; H, 5.21; N, 12.06. Found: C, 82.56; H, 5.38; N, 12.00.
Compound 4b: orange solid; mp 106 °C. 1H NMR (200 MHz, CDCl3): δ = 2.58 (s, 3 H), 3.99 (s, 3 H), 7.36 (m, 2 H), 7.57 (m, 2 H), 7.76 (s, 1 H),
8.09 (m, 2 H), 8.63 (s, 1 H). 13C NMR (50 MHz, CDCl3): δ = 21.4, 27.7, 108.6, 118.1, 119.8, 120.5, 121.3, 124.1, 126.7, 127.2, 127.3,
127.9, 131.1, 132.4, 142.8, 145.3, 152.5. Anal. Calcd for C17H14N2: C, 82.90; H, 5.73; N, 11.37. Found: C, 83.01; H, 5.85; N, 11.56.
Compound 4c: white solid; mp 164 °C. 1H NMR (200 MHz, DMSO-d
6): δ = 3.90 (s, 3 H), 7.34 (m, 1 H), 7.48 (m, 1 H), 7.62 (m, 2 H), 8.02 (m, 1 H),
8.13 (m, 1 H), 8.27 (m, 1 H), 9.06 (s, 1 H). 13C NMR (50 MHz, DMSO-d
6): δ = 27.7, 109.6, 118.0, 119.6, 120.4, 121.9, 122.4, 123.4, 125.8, 127.9, 128.6,
130.6, 133.5, 142.6, 146.6, 152.6. Anal. Calcd for C16H11ClN2: C, 72.05; H, 4.16; N, 10.50. Found: C, 72.04; H, 4.24; N, 10.54.
Compound 4d: yellow solid; mp 216 °C. 1H NMR (200 MHz, CDCl3): δ = 3.97 (s, 3 H), 4.05 (s, 3 H), 4.09 (s, 3 H), 7.25 (s, 1 H), 7.27 (m, 1 H),
7.40 (m, 1 H), 7.48 (s, 1 H), 7.55 (m, 1 H), 8.10 (m, 1 H), 8.57 (s, 1 H). 13C NMR (50 MHz, CDCl3): δ = 27.7, 56.0, 56.1, 106.2, 106.7, 108.5, 116.1, 119.0, 119.6, 120.5, 120.8, 125.9,
127.2, 142.0, 143.7, 147.2, 152.0, 152.2. Anal. Calcd for C18H16N2O2: C, 73.95; H, 5.52; N, 9.58. Found: C, 73.98; H, 5.57; N, 9.62.
Compound 4e: yellow solid; mp 193 °C. 1H NMR (200 MHz, CDCl3): δ = 3.94 (s, 3 H), 6.09 (s, 2 H), 7.21 (s, 1 H), 7.27 (m, 1 H), 7.40 (m, 1 H),
7.44 (s, 1 H), 7.54 (m, 1 H), 8.07 (m, 1 H), 8.49 (s, 1 H). 13C NMR (50 MHz, CDCl3): δ = 27.6, 101.4, 103.5, 104.5, 108.6, 116.0, 119.6, 120.1, 120.3, 120.9, 126.3,
127.2, 142.0, 145.0, 145.3, 150.4, 151.8. Anal. Calcd for C17H12N2O2: C, 73.90; H, 4.38; N, 10.14. Found: C, 74.00; H, 4.40; N, 9.80.
<A NAME="RG29507ST-21">21</A>
Porter JC.
Robinson R.
Wyler M.
J. Chem. Soc.
1941,
620