Abstract
A new concept for immobilising Grubbs III catalyst by direct coordination of ruthenium
to polyvinyl pyridine (PVP) is presented. PVP was prepared by precipitation polymerisation,
which led to small bead sizes (0.2-2 µm) and large surface areas. Compared to commercial
resins, this phase showed superior properties when employed in model ring-closing
metathesis (RCM) and in representative RCM, enyne and CM reactions with various substrates.
The concept of immobilisation was also applied to Raschig rings made from a glass
polymer composite material, which can be incorporated into devices for continuous
flow processes.
Key words
catalysis - immobilisation - olefin metathesis - microwave assistance - Ru-catalyst
- polymer support
References
General reviews:
<A NAME="RG28605ST-1A">1a </A>
Schrock RR.
Hoveyda AH.
Angew. Chem. Int. Ed.
2003,
42:
4592
<A NAME="RG28605ST-1B">1b </A>
Trnka TM.
Grubbs RH.
Acc. Chem. Res.
2001,
34:
18
<A NAME="RG28605ST-1C">1c </A>
Fürstner A.
Angew. Chem. Int. Ed.
2000,
39:
3012
<A NAME="RG28605ST-1D">1d </A>
Grubbs RH.
Chang S.
Tetrahedron
1998,
54:
4413
<A NAME="RG28605ST-1E">1e </A>
Schuster M.
Blechert S.
Angew. Chem., Int. Ed. Engl.
1997,
36:
2037
Ruthenium contamination is an important aspect in envisaged industrial applications
of this methodology, see for example:
<A NAME="RG28605ST-2A">2a </A>
Nicola T.
Brenner M.
Donsbach K.
Kreye P.
Org. Process Res. Dev.
2005,
9:
513
For approaches where ruthenium impurities are removed by addition of various scavengers,
see:
<A NAME="RG28605ST-2B">2b </A>
Maynard HD.
Grubbs RH.
Tetrahedron Lett.
2000,
40:
4137
<A NAME="RG28605ST-2C">2c </A>
Paquette LA.
Schloss JD.
Efremov I.
Fabris F.
Gallou F.
Mendez-Andino J.
Yang J.
Org. Lett.
2000,
2:
1259
<A NAME="RG28605ST-2D">2d </A>
Ahn YM.
Yang K.
Georg GI.
Org. Lett.
2001,
3:
1411
<A NAME="RG28605ST-2E">2e </A>
For a recent example of use of biphasic extraction of ruthenium remains in preparation
of hepatitis C antiviral agent BILN 2061, see: WO 2004/089974 A1 (2004, Boehringer
Ingelheim International GmbH).
Reviews on polymer-bound reagents and catalysts:
<A NAME="RG28605ST-3A">3a </A>
Solodenko W.
Frenzel T.
Kirschning A. In
Polymeric Materials in Organic Synthesis and Catalysis
Buchmeiser MR.
Wiley-VCH;
Weinheim:
2003.
p.201-240
<A NAME="RG28605ST-3B">3b </A>
Kirschning A.
Monenschein H.
Wittenberg R.
Angew. Chem. Int. Ed.
2001,
40:
650
<A NAME="RG28605ST-3C">3c </A>
Ley SV.
Baxendale IR.
Bream RN.
Jackson PS.
Leach AG.
Longbottom DA.
Nesi M.
Scott JS.
Storer RI.
Taylor SJ.
J. Chem. Soc., Perkin Trans. 1
2000,
3815
Reviews:
<A NAME="RG28605ST-4A">4a </A>
Kingsbury JS.
Hoveyda AH. In
Polymeric Materials in Organic Synthesis and Catalysis
Buchmeiser MR.
Wiley-VCH;
Weinheim:
2003.
p.467
<A NAME="RG28605ST-4B">4b </A>
Buchmeiser MR.
New J. Chem.
2004,
28:
549
<A NAME="RG28605ST-5A">5a </A>
Kingsbury JS.
Harrity JPA.
Bonitatebus PA.
Hoveyda AH.
J. Am. Chem. Soc.
1999,
121:
791
<A NAME="RG28605ST-5B">5b </A>
Garber SB.
Kingsbury JS.
Gray BL.
Hoveyda AH.
J. Am. Chem. Soc.
2000,
122:
8168
<A NAME="RG28605ST-6A">6a </A>
Hoveyda AH.
Gillingham DG.
Van Veldhuizen JJ.
Kataoka O.
Garber SB.
Kingsbury JS.
Harrity JPA.
Org. Biomol. Chem.
2004,
2:
1
<A NAME="RG28605ST-6B">6b </A>
Kingsbury JS.
Hoveyda AH.
J. Am. Chem. Soc.
2005,
127:
4510
For syntheses of supported variants of 3 , 4 , see inter alia:
<A NAME="RG28605ST-7A">7a </A>
Kingsbury JS.
Garber SB.
Giftos JM.
Gray BL.
Okamoto MM.
Farrer RA.
Fourkas JT.
Hoveyda AH.
Angew. Chem. Int. Ed.
2001,
40:
4251
<A NAME="RG28605ST-7B">7b </A>
Grela K.
Tryznowski M.
Bieniek M.
Tetrahedron Lett.
2002,
43:
9055
<A NAME="RG28605ST-7C">7c </A>
Connon SJ.
Dunne AM.
Blechert S.
Angew. Chem. Int. Ed.
2002,
41:
3835
<A NAME="RG28605ST-7D">7d </A>
Dowden J.
Savovic J.
Chem. Commun.
2001,
37
<A NAME="RG28605ST-7E">7e </A>
Yao Q.
Angew. Chem. Int. Ed.
2000,
39:
3896
<A NAME="RG28605ST-7F">7f </A>
Yao Q.
Zhang Y.
Angew. Chem. Int. Ed.
2003,
42:
3395
<A NAME="RG28605ST-7G">7g </A>
Connon SJ.
Blechert S.
Bioorg. Med. Chem. Lett.
2002,
12:
1873
<A NAME="RG28605ST-7H">7h </A>
Yao Q.
Zhang Y.
J. Am. Chem. Soc.
2004,
12:
74
<A NAME="RG28605ST-7I">7i </A>
Yao Q.
Motta AR.
Tetrahedron Lett.
2004,
45:
2447
<A NAME="RG28605ST-7J">7j </A>
Yang L.
Mayr M.
Wurst K.
Buchmeiser MR.
Chem.-Eur. J.
2004,
10:
5761
<A NAME="RG28605ST-7K">7k </A>
Krause JO.
Nuyken O.
Wurst K.
Buchmeiser MR.
Chem.-Eur. J.
2004,
10:
777
<A NAME="RG28605ST-7L">7l </A>
Krause JO.
Zarka MT.
Anders JU.
Weberskirch R.
Nuyken O.
Buchmeiser MR.
Angew. Chem. Int. Ed.
2003,
42:
5965
<A NAME="RG28605ST-7M">7m </A>
Audic N.
Clavier H.
Mauduit M.
Guillemin J.-C.
J. Am. Chem. Soc.
2003,
125:
9248
<A NAME="RG28605ST-7N">7n </A>
Clavier H.
Audic N.
Mauduit M.
Chem. Commun.
2004,
282
<A NAME="RG28605ST-8">8 </A> For an excellent review on strategies of non-covalent immobilisation of catalysts
refer to:
Horn J.
Michalek F.
Tzschucke CC.
Bannwarth W.
Top. Curr. Chem.
2004,
242:
43
<A NAME="RG28605ST-9A">9a </A>
Kirschning A.
Jas G.
Top. Curr. Chem.
2004,
242:
209
<A NAME="RG28605ST-9B">9b </A>
Jas G.
Kirschning A.
Chem.-Eur. J.
2003,
9:
5708
<A NAME="RG28605ST-9C">9c </A>
Fletcher PDI.
Haswell SJ.
Pombo-Villar E.
Warrington BH.
Watts P.
Wong SY.
Zhang X.
Tetrahedron
2002,
58:
4735
<A NAME="RG28605ST-9D">9d </A>
Pombo-Villar E.
Warrington BH.
Watts P.
Wong SY.
Zhang X.
Tetrahedron
2002,
58:
4735
<A NAME="RG28605ST-10">10 </A>
Kunz U.
Leue S.
Stuhlmann F.
Sourkouni-Argirusi G.
Wen H.
Jas G.
Kirschning A.
Eur. J. Org. Chem.
2004,
3601
<A NAME="RG28605ST-11A">11a </A>
Schöning KU.
End N.
Top. Curr. Chem.
2004,
242:
241
<A NAME="RG28605ST-11B">11b </A>
Schöning KU.
End N.
Top. Curr. Chem.
2004,
242:
273
<A NAME="RG28605ST-12">12 </A>
Part of the work was described by K. Mennecke in his Diploma thesis (Hannover 2004).
<A NAME="RG28605ST-13A">13a </A>
Kirschning A.
Altwicker C.
Dräger G.
Harders J.
Hoffmann N.
Hoffmann U.
Schönfeld H.
Solodenko W.
Kunz U.
Angew. Chem. Int. Ed.
2001,
40:
3995
<A NAME="RG28605ST-13B">13b </A>
Kunz U.
Schönfeld H.
Solodenko W.
Jas G.
Kirschning A.
Ind. Eng. Chem. Res.
2005,
in press
<A NAME="RG28605ST-14">14 </A>
Kunz U,
Kirschning A, and
Hoffmann U. inventors; EP 1268566 B1.
<A NAME="RG28605ST-15">15 </A>
Preparation of Polyvinyl Pyridine Phase by Precipitation Polymerisation.
First, a mixture of 4-vinylpyridine (43.20 g, 410.8 mmol) and divinylbenzene (3.86
g; purity 65% besides ethyl benzene) was prepared. This mixture was filled up with
an n -alkane (C14-C17 fraction) to a total volume of 300 mL, AIBN (327 mg, 2 mmol) was
added and the temperature was raised to 70 °C. The reaction mixture is kept at this
temperature for 24 h. Then the solid material formed was filtered, rinsed with CHCl3 and further purified by extraction in a Soxhlet extractor with CHCl3 and finally dried under reduced pressure to yield PVP (4.85 mmol/g capacity).
<A NAME="RG28605ST-16">16 </A>
Love JA.
Morgan JP.
Truka TM.
Grubbs RH.
Angew. Chem. Int. Ed.
2002,
41:
4035
For selected applications of 5 , see inter alia:
<A NAME="RG28605ST-17A">17a </A>
Kanemitsu T.
Seeberger PH.
Org. Lett.
2003,
5:
4541
<A NAME="RG28605ST-17B">17b </A>
Rai AN.
Basu A.
Org. Lett.
2004,
6:
2861
<A NAME="RG28605ST-17C">17c </A>
Aggarwal VK.
Astle CJ.
Rogers-Evans M.
Org. Lett.
2004,
6:
1469
<A NAME="RG28605ST-17D">17d </A>
Kulkarni AA.
Diver ST.
Org. Lett.
2003,
5:
3463
<A NAME="RG28605ST-17E">17e </A>
Giessert AJ.
Brazis NJ.
Diver ST.
Org. Lett.
2003,
5:
3819
<A NAME="RG28605ST-17F">17f </A>
Chen B.
Sleima HF.
Macromolecules
2004,
37:
5866
<A NAME="RG28605ST-17G">17g </A>
Rezvani A.
Bazzi HS.
Chen B.
Rakotondradany F.
Sleiman HF.
Inorg. Chem.
2004,
43:
5112
<A NAME="RG28605ST-17H">17h </A>
Schuehler DE.
Williams JE.
Sponsler MB.
Macromolecules
2004,
37:
6255
<A NAME="RG28605ST-17I">17i </A>
Parrish B.
Emrick T.
Macromolecules
2004,
37:
5863
<A NAME="RG28605ST-17J">17j </A>
Hansen EC.
Lee D.
Org. Lett.
2004,
6:
2035
<A NAME="RG28605ST-18">18 </A>
Indeed, this idea has been shown to be powerful for the immobilisation of enzymes
using nickel NTA-linkers on sepharose for coordinatively trapping enzymes tagged with
a His-tag.
<A NAME="RG28605ST-19">19 </A>
Preparation of Functionalised Polyvinyl Pyridines 6a and 6b.
A suspension of ruthenium catalyst 5 (140 mg, 0.16 mmol; prepared according to ref. 16) and PVP (6a : 400 mg, 1.84 mmol; 6b : 373 mg, purchased from Acros) in toluene (3 mL) was shaken under argon at r.t. for
72 h. The polymer was filtered and washed with five portions of toluene (2 mL) to
yield functionalised polymer 6 (polymer obtained by precipitation polymerisation: 510 mg, 0.15 mmol ruthenium; 96%
and polymer from Acros: 477 mg, 0.09 mmol ruthenium; 80%).
<A NAME="RG28605ST-20">20 </A>
In comparison, treatment of catalyst 5 with pyridine yielded a new material which from mass spectrometric analysis does
not contain bromine but which turned out to be highly unstable and quickly degraded
under nitrogen even at -20 °C.
<A NAME="RG28605ST-21">21 </A>
General Procedure for Metathesis Reactions with Polymer 6a.
To a suspension of polymer 6a (5 mol%) in dry toluene (0.02 M, 10 mL) under nitrogen was added the substrate (0.25
mmol). The resulting mixture was shaken for 4-7 h at 100 °C. At the end of the reaction
(GC monitoring) the polymer was filtered off and washed with several portions of CH2 Cl2 . The solution was concentrated under reduced pressure and in most cases the crude
material was sufficiently pure. In order to obtain analytically pure samples the crude
material was purified by flash column chromatography (mixture of PE-EtOAc as eluent).
Studies on the Stability of Polymer-Bound Catalysts 6a.
Repeated reactions were carried out according to the general procedure given above
by dissolving diallyl malonate 7 (55 µL, 0.228 mmol) in toluene (3 mL). After each reaction the polymer was filtered,
washed with five portions of toluene (2 mL), dried under vacuum and reused for the
next run. The crude products were isolated quantitatively; the yield of the RCM product
8 was determined after purification by flash column chromatography: 1st run (2 h; 43.5 mg, 0.2 mmol; 89%); 2nd run (2 h; 31.7 mg, 0.14 mmol; 65%); 3rd run (2 h; 30.5 mg, 0.14 mmol; 64%); 4th run (2 h; 13.8 mg, 60 µmol; 29%); 5th run (6 h; 4.8 mg, 22 µmol; 10%).
<A NAME="RG28605ST-22">22 </A> Recently, Grubbs and coworkers were able to isolate a ruthenium-hydrido complex,
formed as a thermal degradation product of catalyst 2 which could be made responsible for double-bond migration:
Hong SH.
Day MW.
Grubbs RH.
J. Am. Chem. Soc.
2004,
126:
7414
<A NAME="RG28605ST-23">23 </A> Review:
Uma R.
Crevisy C.
Gree R.
Chem. Rev.
2003,
103:
27
<A NAME="RG28605ST-24A">24a </A>
Chen G.-w.
Kirschning A.
Chem.-Eur. J.
2002,
8:
2717
<A NAME="RG28605ST-24B">24b </A>
Arisawa M.
Terada Y.
Nakagawa M.
Nishida A.
Angew. Chem.
2002,
114:
4926
<A NAME="RG28605ST-24C">24c </A>
Gurjar MK.
Yakambram P.
Tetrahedron Lett.
2001,
42:
3633
<A NAME="RG28605ST-24D">24d </A>
Braddock DC.
Wildsmith AJ.
Tetrahedron Lett.
2001,
42:
3239
<A NAME="RG28605ST-24E">24e </A>
Hoye TR.
Zhao H.
Org. Lett.
1999,
1:
1123
<A NAME="RG28605ST-25A">25a </A>
Sutton E.
Seigal BA.
Finnegan DF.
Snapper ML.
J. Am. Chem. Soc.
2002,
124:
13390
<A NAME="RG28605ST-25B">25b </A>
Schmidt B.
Chem. Commun.
2004,
742
<A NAME="RG28605ST-26A">26a </A>
Ahmed M.
Arnauld T.
Barrett AGM.
Braddock DC.
Procopiou PA.
Synlett
2000,
1007
<A NAME="RG28605ST-26B">26b </A>
Reaction was carried according to the general procedure given for the metathesis reactions
with polymer 6a . Additionally, 1-octene (5 mol%) was added to the reaction mixture to yield 2,5-dihydro-1-tosyl-1H -pyrole(15 ) in 35% instead of 96% without 1-octene.