ABSTRACT
The immune system maintains the homeostasis of the biliary epithelium, where bile
and cholangiocytes play an important role in modulating immune responses. Furthermore,
cholangiocytes represent the target of the immune system in several hepatobiliary
diseases (e.g., primary biliary cirrhosis). This article is organized into two parts.
The first section reviews the role of cholangiocytes in the immune defense and the
mechanisms by which cholangiocytes regulate immune responses. The expression of adhesion
molecules on the cholangiocyte surface allows the interaction with immune cells, thus
localizing and modulating the intensity of the immune reactions. Moreover, cholangiocytes
secrete immunoglobulins, cytokines, and other mediators, which affect the functions
of the surrounding liver cells, as well the cholangiocytes themselves. Cholangiocytes
express major histocompatibility complex molecules, and thereby could act as antigen-presenting
cells. In the second section, we describe how cytokines and inflammatory mediators
modulate cholangiocyte function such as proliferation, apoptosis, secretion, and malignant
transformation.
KEYWORDS
Biliary epithelium - immune system - cytokines - adhesion molecules - antigen presenting
cells
REFERENCES
1
Alpini G, McGill J M, LaRusso N F.
The pathobiology of biliary epithelia.
Hepatology.
2002;
35
1256-1268
2
Roberts S K, Ludwig J, LaRusso N F.
The pathobiology of biliary epithelia.
Gastroenterology.
1997;
112
269-279
3 Alpini G, Prall R T, LaRusso N F.
The pathobiology of biliary epithelia . In: Arias IM, Boyer JL, Chisari FV, et al The Liver: Biology and Pathobiology, 4th
ed. Philadelphia; Lippincott Williams & Wilkins 2001: 421-435
4
Nathanson M H, Boyer J L.
Mechanisms and regulation of bile secretion.
Hepatology.
1991;
14
551-566
5
Boyer J L.
Bile duct epithelium: frontiers in transport physiology.
Am J Physiol.
1996;
270
G1-G5
6
Masyuk A I, Marinelli R A, LaRusso N F.
Water transport by epithelia of the digestive tract.
Gastroenterology.
2002;
122
545-562
7
Kanz M F, Gunasena G H, Kaphalia L et al..
A minimally toxic dose of methylene dianiline injures biliary epithelial cells in
rats.
Toxicol Appl Pharmacol.
1998;
150
414-426
8
Kanz M F, Dugas T R, Liu H, Santa Cruz V.
Glutathione depletion exacerbates methylenedianiline toxicity to biliary epithelial
cells and hepatocytes in rats.
Toxicol Sci.
2003;
74
447-456
9
Reynoso-Paz S, Coppel R L, Mackay I R et al..
The immunobiology of bile and biliary epithelium.
Hepatology.
1999;
30
351-357
10 Yamagiwa Y, Patel T.
Cytokine regulation of cholangiocyte growth . In: Alpini G, Alvaro D, Marzioni M, et al The Pathophysiology of Biliary Epithelia. Georgetown,
TX; Landes Bioscience 2004: 227-234
11
Kanno N, LeSage G, Glaser S et al..
Functional heterogeneity of the intrahepatic biliary epithelium.
Hepatology.
2000;
31
555-561
12
Steiner J W, Carruthers J S, Kalifat S R.
The ductular cell reaction of rat liver in extrahepatic cholestasis. I. Proliferated
biliary epithelial cells.
Exp Mol Pathol.
1962;
1
162-185
13 Glaser S S, Francis H, Marzioni M et al..
Functional heterogeneity of the intrahepatic biliary epithelium . In: Alpini G, Alvaro D, Marzioni M, et al The Pathophysiology of Biliary Epithelia. Georgetown,
TX; Landes Bioscience 2004: 245-254
14
Alpini G, Roberts S, Kuntz S M et al..
Morphological, molecular, and functional heterogeneity of cholangiocytes from normal
rat liver.
Gastroenterology.
1996;
110
1636-1643
15
Alpini G, Glaser S, Robertson W et al..
Large but not small intrahepatic bile ducts are involved in secretin-regulated ductal
bile secretion.
Am J Physiol.
1997;
272
G1064-G1074
16
Benedetti A, Bassotti C, Rapino K et al..
A morphometric study of the epithelium lining the rat intrahepatic biliary tree.
J Hepatol.
1996;
24
335-342
17
Alpini G, Glaser S S, Ueno Y et al..
Heterogeneity of the proliferative capacity of rat cholangiocytes after bile duct
ligation.
Am J Physiol.
1998;
274
G767-G775
18
LeSage G D, Glaser S S, Marucci L et al..
Acute carbon tetrachloride feeding induces damage of large but not small cholangiocytes
from BDL rat liver.
Am J Physiol.
1999;
276
G1289-G1301
19
Marzioni M, Glaser S S, Francis H et al..
Functional heterogeneity of cholangiocytes.
Semin Liver Dis.
2002;
22
227-240
20
Gaudio E, Onori P, Pannarale L, Alvaro D.
Hepatic microcirculation and peribiliary plexus in experimental biliary cirrhosis:
a morphological study.
Gastroenterology.
1996;
111
1118-1124
21 Gaudio E, Onori P, Franchitto A et al..
Vascularization of the intrahepatic biliary tree and its role in the regulation of
cholangiocyte growth . In: Alpini G, Alvaro D, Marzioni M et al The Pathophysiology of Biliary Epithelia. Georgetown,
TX; Landes Bioscience 2004: 41-50
22 Vierling J, Braun M, Wang H.
Immunopathogenesis of vanishing bile duct syndromes . In: Alpini G, Alvaro D, Marzioni M, et al The Pathophysiology of Biliary Epithelia. Georgetown,
TX; Landes Bioscience 2004: 330-356
23
Tsukahara A, Seki S, Iiai T et al..
Mouse liver T cells: their change with aging and in comparison with peripheral T cells.
Hepatology.
1997;
26
301-309
24
Naito M, Hasegawa G, Ebe Y, Yamamoto T.
Differentiation and function of Kupffer cells.
Med Electron Microsc.
2004;
37
16-28
25
Delves P J, Roitt I M.
The immune system. First of two parts.
N Engl J Med.
2000;
343
37-49
26
Delves P J, Roitt I M.
The immune system. Second of two parts.
N Engl J Med.
2000;
343
108-117
27
Klein J, Sato A.
The HLA system. First of two parts.
N Engl J Med.
2000;
343
702-709
28
Klein J, Sato A.
The HLA system. Second of two parts.
N Engl J Med.
2000;
343
782-786
29
Hoebe K, Janssen E, Beutler B.
The interface between innate and adaptive immunity.
Nat Immunol.
2004;
5
971-974
30
Janeway Jr C A, Bottomly K.
Signals and signs for lymphocyte responses.
Cell.
1994;
76
275-285
31
Chakrabarti D, Hultgren B, Stewart T A.
IFN-alpha induces autoimmune T cells through the induction of intracellular adhesion
molecule-1 and B7.2
J Immunol.
1996;
157
522-528
32 Demetris A J, Lunz III J G, Subbotin V et al..
Participation of cytokines and growth factors in biliary epithelial proliferation
and mito-inhibition during ductular reactions . In: Alpini G, Alvaro D, Marzioni M, et al The Pathophysiology of Biliary Epithelia. Georgetown,
TX; Landes Bioscience 2004: 167-191
33 Torok N J, Gores G J. Apoptosis of biliary epithelial cells. In: Alpini G, Alvaro
D, Marzioni M, et al The Pathophysiology of Biliary Epithelia Georgetown, TX; Landes
Bioscience 2004: 219-226
34
Alvarez F, Schwarz K.
Immune diseases of the liver and biliary tract.
J Pediatr Gastroenterol Nutr.
2002;
35(suppl 1)
S39-S43
35
Ueno Y, Ishii M, Yahagi K et al..
Fas-mediated cholangiopathy in the murine model of graft versus host disease.
Hepatology.
2000;
31
966-974
36 Ueno Y.
Fas-mediated cholangiopathy in a murine model of graft-versus-host disease . In: Alpini G, Alvaro D, Marzioni M, et al The Pathophysiology of Biliary Epithelia. Georgetown,
TX; Landes Bioscience 2004: 235-244
37
Popper H, Kent G, Stein R.
Ductular cell reaction in the liver in hepatic injury.
J Mt Sinai Hosp N Y.
1957;
24
551-556
38
Lazaridis K N, Strazzabosco M, LaRusso N F.
The cholangiopathies: disorders of biliary epithelia.
Gastroenterology.
2004;
127
1565-1577
39 Schuppan et al..
Fibrogenesis in PBC . In: Lindor KD, Heathcote J, Poupon R Primary Biliary Cirrhosis: From Pathogenesis
to Clinical Treatment. Dordrecht, The Netherlands; Kluwer Academic Press 1998: 64-75
40
Desmet V J.
Modulation of the liver in cholestasis.
J Gastroenterol Hepatol.
1992;
7
313-323
41
Roskams T, Desmet V.
Ductular reaction and its diagnostic significance.
Semin Diagn Pathol.
1998;
15
259-269
42
Desmet V J.
Ludwig symposium on biliary disorders-part I. Pathogenesis of ductal plate abnormalities.
Mayo Clin Proc.
1998;
73
80-89
43
Auth M K, Keitzer R A, Scholz M et al..
Establishment and immunological characterization of cultured human gallbladder epithelial
cells.
Hepatology.
1993;
18
546-555
44
Hreha G, Jefferson D M, Yu C H et al..
Immortalized intrahepatic mouse biliary epithelial cells: immunologic characterization
and immunogenicity.
Hepatology.
1999;
30
358-371
45
Wu C T, Davis P A, Luketic V A, Gershwin M E.
A review of the physiological and immunological functions of biliary epithelial cells:
targets for primary biliary cirrhosis, primary sclerosing cholangitis and drug-induced
ductopenias.
Clin Dev Immunol.
2004;
11
205-213
46
Leon M P, Kirby J A, Gibbs P et al..
Immunogenicity of biliary epithelial cells: study of the expression of B7 molecules.
J Hepatol.
1995;
22
591-595
47
Morita M, Watanabe Y, Akaike T.
Inflammatory cytokines up-regulate intercellular adhesion molecule-1 expression on
primary cultured mouse hepatocytes and T-lymphocyte adhesion.
Hepatology.
1994;
19
426-431
48
Leon M P, Bassendine M F, Wilson J L et al..
Immunogenicity of biliary epithelium: investigation of antigen presentation to CD4+
T cells.
Hepatology.
1996;
24
561-567
49
Sugiura H, Nakanuma Y.
Secretory component and immunoglobulins in the intrahepatic biliary tree and peribiliary
gland in normal livers and hepatolithiasis.
Gastroenterol Jpn.
1989;
24
308-314
50
Scholz M, Cinatl J, Blaheta R A et al..
Expression of human leukocyte antigens class I and class II on cultured biliary epithelial
cells after cytomegalovirus infection.
Tissue Antigens.
1997;
49
640-643
51
Ayres R C, Neuberger J M, Shaw J et al..
Intercellular adhesion molecule-1 and MHC antigens on human intrahepatic bile duct
cells: effect of pro-inflammatory cytokines.
Gut.
1993;
34
1245-1249
52
Cruickshank S M, Southgate J, Selby P J, Trejdosiewicz L K.
Expression and cytokine regulation of immune recognition elements by normal human
biliary epithelial and established liver cell lines in vitro.
J Hepatol.
1998;
29
550-558
53
Leon M P, Bassendine M F, Gibbs P et al..
Immunogenicity of biliary epithelium: study of the adhesive interaction with lymphocytes.
Gastroenterology.
1997;
112
968-977
54
Hahn W C, Burakoff S J, Bierer B E.
Signal transduction pathways involved in T cell receptor-induced regulation of CD2
avidity for CD58.
J Immunol.
1993;
150
2607-2619
55
Guo Y, Wu Y, Shinde S et al..
Identification of a costimulatory molecule rapidly induced by CD40L as CD44H.
J Exp Med.
1996;
184
955-961
56
Sempowski G D, Chess P R, Moretti A J et al..
CD40 mediated activation of gingival and periodontal ligament fibroblasts.
J Periodontol.
1997;
68
284-292
57
Karmann K, Hughes C C, Fanslow W C, Pober J S.
Endothelial cells augment the expression of CD40 ligand on newly activated human CD4+
T cells through a CD2/LFA-3 signaling pathway.
Eur J Immunol.
1996;
26
610-617
58
Morland C M, Fear J, McNab G, Joplin R, Adams D H.
Promotion of leukocyte transendothelial cell migration by chemokines derived from
human biliary epithelial cells in vitro.
Proc Assoc Am Physicians.
1997;
109
372-382
59
Yasoshima M, Kono N, Sugawara H et al..
Increased expression of interleukin-6 and tumor necrosis factor-alpha in pathologic
biliary epithelial cells: in situ and culture study.
Lab Invest.
1998;
78
89-100
60
Matsumoto K, Fujii H, Michalopoulos G et al..
Human biliary epithelial cells secrete and respond to cytokines and hepatocyte growth
factors in vitro: interleukin-6, hepatocyte growth factor and epidermal growth factor
promote DNA synthesis in vitro.
Hepatology.
1994;
20
376-382
61
Bour E S, Ward L K, Cornman G A, Isom H C.
Tumor necrosis factor-alpha-induced apoptosis in hepatocytes in long-term culture.
Am J Pathol.
1996;
148
485-495
62
Fabris L, Strazzabosco M, Crosby H A et al..
Characterization and isolation of ductular cells coexpressing neural cell adhesion
molecule and Bcl-2 from primary cholangiopathies and ductal plate malformations.
Am J Pathol.
2000;
156
1599-1612
63
Rockey D C, Fouassier L, Chung J J et al..
Cellular localization of endothelin-1 and increased production in liver injury in
the rat: potential for autocrine and paracrine effects on stellate cells.
Hepatology.
1998;
27
472-480
64
Wang H, Hreha G, Vierling J.
Proinflammatory cytokines and lipopolysaccharide induce chemokine and cytokine expression
by immortalized biliary epithelial cells through nuclear factor kappa B.
Hepatology.
2001;
34
A369
65
Wang H, Hreha G, Vierling J.
Chemokine receptor expression by biliary epithelial cells during evolution of nonsuppurative
destructive cholangitis in murine chronic graft-vs-host disease.
Hepatology.
2001;
34
A355
66
Wang H, Hreha G, Ouyang Y et al..
Mouse intrahepatic immortalized biliary epithelial cells exhibit innate immune response
functions of macrophages.
Hepatology.
2001;
34
A368
67
Harada K, Ohira S, Isse K et al..
Lipopolysaccharide activates nuclear factor-kappaB through toll-like receptors and
related molecules in cultured biliary epithelial cells.
Lab Invest.
2003;
83
1657-1667
68
Hiramatsu K, Harada K, Tsuneyama K et al..
Amplification and sequence analysis of partial bacterial 16S ribosomal RNA gene in
gallbladder bile from patients with primary biliary cirrhosis.
J Hepatol.
2000;
33
9-18
69
Saidman S L, Duquesnoy R J, Zeevi A et al..
Recognition of major histocompatibility complex antigens on cultured human biliary
epithelial cells by alloreactive lymphocytes.
Hepatology.
1991;
13
239-246
70
Himeno H, Saibara T, Onishi S et al..
Administration of interleukin-2 induces major histocompatibility complex class II
expression on the biliary epithelial cells, possibly through endogenous interferon-gamma
production.
Hepatology.
1992;
16
409-417
71
Markus B H, Duquesnoy R J, Blaheta R A et al..
Role of HLA antigens in liver transplantation with special reference to cellular immune
reactions.
Langenbecks Arch Surg.
1998;
383
87-94
72
Savage C O, Brooks C J.
Human vascular endothelial cells do not induce anergy in allogeneic CD4+ T cells unless
costimulation is prevented.
Transplantation.
1995;
60
734-740
73
Lombardi G, Sidhu S, Batchelor R, Lechler R.
Anergic T cells as suppressor cells in vitro.
Science.
1994;
264
1587-1589
74
Kamihira T, Shimoda S, Nakamura M et al..
Biliary epithelial cells regulate autoreactive T cells: implications for biliary-specific
diseases.
Hepatology.
2005;
41
151-159
75
Iwai Y, Terawaki S, Ikegawa M et al..
PD-1 inhibits antiviral immunity at the effector phase in the liver.
J Exp Med.
2003;
198
39-50
76
Sung J Y, Costerton J W, Shaffer E A.
Defense system in the biliary tract against bacterial infection.
Dig Dis Sci.
1992;
37
689-696
77
Sung J Y, Shaffer E A, Olson M E et al..
Bacterial invasion of the biliary system by way of the portal-venous system.
Hepatology.
1991;
14
313-317
78
Nakanuma Y, Hoso M, Sanzen T, Sasaki M.
Microstructure and development of the normal and pathologic biliary tract in humans,
including blood supply.
Microsc Res Tech.
1997;
38
552-570
79
Hopf U, Moller B, Stemerowicz R et al..
Relation between Escherichia coli R(rough)-forms in gut, lipid A in liver, and primary biliary cirrhosis.
Lancet.
1989;
2
1419-1422
80
Nagura H, Smith P D, Nakane P K, Brown W R.
IGA in human bile and liver.
J Immunol.
1981;
126
587-595
81
Lemaitre-Coelho I, Jackson G D, Vaerman J P.
Rat bile as a convenient source of secretory IgA and free secretory component.
Eur J Immunol.
1977;
7
588-590
82
Russell M W, Brown T A, Mestecky J.
Role of serum IgA. Hepatobiliary transport of circulating antigen.
J Exp Med.
1981;
153
968-976
83
Takahashi I, Nakane P K, Brown W R.
Ultrastructural events in the translocation of polymeric IgA by rat hepatocytes.
J Immunol.
1982;
128
1181-1187
84
Delacroix D L, Courtoy P J, Rahier J et al..
Localization and serum concentration of secretory component during massive necrosis
of human liver.
Gastroenterology.
1984;
86
521-531
85
Daniels C K, Schmucker D L.
Secretory component-dependent binding of immunoglobulin A in the rat, monkey and human:
a comparison of intestine and liver.
Hepatology.
1987;
7
517-521
86
Aagaard B D, Heyworth M F, Oesterle A L et al..
Intestinal immunisation with Escherichia coli protects rats against Escherichia coli
induced cholangitis.
Gut.
1996;
39
136-140
87
Harmatz P R, Kleinman R E, Bunnell B W et al..
Hepatobiliary clearance of IgA immune complexes formed in the circulation.
Hepatology.
1982;
2
328-333
88
Peppard J V, Orlans E, Andrew E, Payne A W.
Elimination into bile of circulating antigen by endogenous IgA antibody in rats.
Immunology.
1982;
45
467-472
89
Mostov K E.
Transepithelial transport of immunoglobulins.
Annu Rev Immunol.
1994;
12
63-84
90
Mazanec M B, Kaetzel C S, Lamm M E et al..
Intracellular neutralization of Sendai and influenza viruses by IgA monoclonal antibodies.
Adv Exp Med Biol.
1995;
371A
651-654
91
Mazanec M B, Coudret C L, Fletcher D R.
Intracellular neutralization of influenza virus by immunoglobulin A anti-hemagglutinin
monoclonal antibodies.
J Virol.
1995;
69
1339-1343
92
Manning R J, Walker P G, Carter L et al..
Studies on the origins of biliary immunoglobulins in rats.
Gastroenterology.
1984;
87
173-179
93
Jackson G D, Walker P G.
The transient appearance of IgM antibodies in the bile of rats injected with Salmonella enteritidis
.
Immunol Lett.
1983;
7
41-45
94
Nakanuma Y, Katayanagi K, Terada T, Saito K.
Intrahepatic peribiliary glands of humans. I. Anatomy, development and presumed functions.
J Gastroenterol Hepatol.
1994;
9
75-79
95
Saito K, Nakanuma Y.
Lactoferrin and lysozyme in the intrahepatic bile duct of normal livers and hepatolithiasis.
An immunohistochemical study.
J Hepatol.
1992;
15
147-153
96
Saito J M, Maher J J.
Bile duct ligation in rats induces biliary expression of cytokine-induced neutrophil
chemoattractant.
Gastroenterology.
2000;
118
1157-1168
97
Park J, Tadlock L, Gores G J, Patel T.
Inhibition of interleukin 6-mediated mitogen-activated protein kinase activation attenuates
growth of a cholangiocarcinoma cell line.
Hepatology.
1999;
30
1128-1133
98
Spirli C, Nathanson M H, Fiorotto R et al..
Proinflammatory cytokines inhibit secretion in rat bile duct epithelium.
Gastroenterology.
2001;
121
156-169
99
Spirli C, Fabris L, Duner E et al..
Cytokine-stimulated nitric oxide production inhibits adenylyl cyclase and cAMP-dependent
secretion in cholangiocytes.
Gastroenterology.
2003;
124
737-753
100
Marra F.
Chemokines in liver inflammation and fibrosis.
Front Biosci.
2002;
7
d1899-d1914
101
Jaiswal M, LaRusso N F, Gores G J.
Nitric oxide in gastrointestinal epithelial cell carcinogenesis: linking inflammation
to oncogenesis.
Am J Physiol.
2001;
281
G626-G634
102
Park J, Gores G J, Patel T.
Lipopolysaccharide induces cholangiocyte proliferation via an interleukin-6-mediated
activation of p44/p42 mitogen-activated protein kinase.
Hepatology.
1999;
29
1037-1043
103
Yokomuro S, Tsuji H, Lunz III J G et al..
Growth control of human biliary epithelial cells by interleukin 6, hepatocyte growth
factor, transforming growth factor beta1, and activin A: comparison of a cholangiocarcinoma
cell line with primary cultures of non-neoplastic biliary epithelial cells.
Hepatology.
2000;
32
26-35
104
Liu Z, Sakamoto T, Ezure T et al..
Interleukin-6, hepatocyte growth factor, and their receptors in biliary epithelial
cells during a type I ductular reaction in mice: interactions between the periductal
inflammatory and stromal cells and the biliary epithelium.
Hepatology.
1998;
28
1260-1268
105
Saperstein L A, Jirtle R L, Farouk M et al..
Transforming growth factor-beta 1 and mannose 6-phosphate/insulin-like growth factor-II
receptor expression during intrahepatic bile duct hyperplasia and biliary fibrosis
in the rat.
Hepatology.
1994;
19
412-417
106
Tadlock L, Yamagiwa Y, Hawker J et al..
Transforming growth factor-beta inhibition of proteasomal activity: a potential mechanism
of growth arrest.
Am J Physiol Cell Physiol.
2003;
285
C277-C285
107
Miyazaki M, Ohashi R, Tsuji T et al..
Transforming growth factor-beta 1 stimulates or inhibits cell growth via down- or
up-regulation of p21/Waf1.
Biochem Biophys Res Commun.
1998;
246
873-880
108
Afford S C, Ahmed-Choudhury J, Randhawa S et al..
CD40 activation-induced, Fas-dependent apoptosis and NF-kappaB/AP-1 signaling in human
intrahepatic biliary epithelial cells.
FASEB J.
2001;
15
2345-2354
109
Ahn E Y, Pan G, Vickers S M, McDonald J M.
IFN-gamma upregulates apoptosis-related molecules and enhances Fas-mediated apoptosis
in human cholangiocarcinoma.
Int J Cancer.
2002;
100
445-451
110
Gapany C, Zhao M, Zimmermann A.
The apoptosis protector, bcl-2 protein, is downregulated in bile duct epithelial cells
of human liver allografts.
J Hepatol.
1997;
26
535-542
111
Utaisincharoen P, Tangthawornchaikul N, Ubol S et al..
TNF-alpha induces caspase 3 (CPP 32) dependent apoptosis in human cholangiocarcinoma
cell line.
Southeast Asian J Trop Med Public Health.
2000;
31(suppl 1)
167-170
112
Sherlock S.
Overview of chronic cholestatic conditions in adults: terminology and definitions.
Clin Liver Dis.
1998;
2
217-233
vii
113 Spirli C, Okolicsanyi L, Strazzabosco M.
Effects of cytokines and nitric oxide on bicarbonate secretion by cholangiocytes . In: Alpini G, Alvaro D, Marzioni M, et al The Pathophysiology of Biliary Epithelia. Georgetown,
TX; Landes Bioscience 2004: 81-88
114
Gaweco A S, Otto G, Otto H F et al..
Distinct intragraft cytokine gene expression patterns during acute hepatic rejection
under cyclosporine versus FK 506 primary immunosuppression.
Transplant Proc.
1994;
26
3111-3113
115
McGill J M, Yen M S, Cummings O W et al..
Interleukin-5 inhibition of biliary cell chloride currents and bile flow.
Am J Physiol Gastrointest Liver Physiol.
2001;
280
G738-G745
116
Trauner M.
When bile ducts say NO: the good, the bad, and the ugly.
Gastroenterology.
2003;
124
847-851
117
Buttery L D, Evans T J, Springall D R et al..
Immunochemical localization of inducible nitric oxide synthase in endotoxin-treated
rats.
Lab Invest.
1994;
71
755-764
118
Trauner M, Nathanson M H, Rydberg S A et al..
Endotoxin impairs biliary glutathione and HCO3- excretion and blocks the choleretic
effect of nitric oxide in rat liver.
Hepatology.
1997;
25
1184-1191
119
Xia X, Roundtree M, Merikhi A et al..
Degradation of the apical sodium-dependent bile acid transporter by the ubiquitin-proteasome
pathway in cholangiocytes.
J Biol Chem.
2004;
279
44931-44937
120
Gores G J.
Cholangiocarcinoma: current concepts and insights.
Hepatology.
2003;
37
961-969
121
Jaiswal M, LaRusso N F, Shapiro R A et al..
Nitric oxide-mediated inhibition of DNA repair potentiates oxidative DNA damage in
cholangiocytes.
Gastroenterology.
2001;
120
190-199
122
Torok N J, Higuchi H, Bronk S, Gores G J.
Nitric oxide inhibits apoptosis downstream of cytochrome C release by nitrosylating
caspase 9.
Cancer Res.
2002;
62
1648-1653
123
Zhang Z, Lai G H, Sirica A E.
Celecoxib-induced apoptosis in rat cholangiocarcinoma cells mediated by Akt inactivation
and Bax translocation.
Hepatology.
2004;
39
1028-1037
124
Nzeako U C, Guicciardi M E, Yoon J H et al..
COX-2 inhibits Fas-mediated apoptosis in cholangiocarcinoma cells.
Hepatology.
2002;
35
552-559
125
Tanaka S, Sugimachi K, Shirabe K et al..
Expression and antitumor effects of TRAIL in human cholangiocarcinoma.
Hepatology.
2000;
32
523-527
126
Utaisincharoen P, Ubol S, Tangthawornchaikul N et al..
Binding of tumour necrosis factor-alpha (TNF-alpha) to TNF-RI induces caspase(s)-dependent
apoptosis in human cholangiocarcinoma cell lines.
Clin Exp Immunol.
1999;
116
41-47
127
Sirica A E, Lai G H, Endo K et al..
Cyclooxygenase-2 and ERBB-2 in cholangiocarcinoma: potential therapeutic targets.
Semin Liver Dis.
2002;
22
303-313
128 Vierling J M.
Animal models of autoimmune liver diseases . In: Gershwin ME, Vierling JM, Manns MP Immunology of the Liver. Philadelphia; Hanley
& Belfus 2002: 200-230
Gianfranco AlpiniPh.D.
The Texas A&M University System, HSC COM, and Central Texas Veterans HCS
MRB, 702 South West H.K. Dodgen Loop
Temple, Texas 76504
eMail: galpini@tamu.edu
eMail: galpini@medicine.tamu.edu