Pneumologie 2005; 59(11): 811-818
DOI: 10.1055/s-2005-915557
Auditorium maximum - Pneumologie 2005 (5)
© Georg Thieme Verlag Stuttgart · New York

Neue Konzepte zur Pathophysiologie und Therapie der Mukoviszidose

New Concepts of Pathophysiology and Therapy in Cystic FibrosisT.  O.  Hirche1 , S.  Loitsch1 , C.  Smaczny1 , T.  O. F.  Wagner1
  • 1Schwerpunkt Pneumologie/Allergologie, Zentrum der Inneren Medizin I, Klinikum der Johann Wolfgang Goethe-Universität
Further Information

Publication History

Publication Date:
15 November 2005 (online)

Zusammenfassung

Inzwischen hat die Mehrheit der an Mukoviszidose (syn.: Cystische Fibrose, CF) leidenden Patienten in Deutschland die Volljährigkeit erreicht. Mit zunehmendem Lebensalter steigt jedoch die Morbidität und der Anteil pulmonaler Komplikationen überproportional an. Auch durch weitere Optimierung der bestehenden symptomatischen Maßnahmen kann diese Entwicklung nicht verhindert werden, so dass dringender Bedarf an neuen, kausal-orientierten Therapieregimen besteht. In den vergangenen Jahren wurden die molekularbiologischen Grundlagen der CF-Erkrankung intensiv erforscht und das erworbene Wissen steht heute als Basis für die Entwicklung innovativer Behandlungsstrategien zur Verfügung. Während die Struktur des CF-Gens und seines Genprodukts cystic fibrosis transmembrane conductance regulator (CFTR) inzwischen gut verstanden erscheinen, wird die Funktion von CFTR in den Atemwegen weiterhin kontrovers diskutiert. Insbesondere ist weiter unklar, wie aus dem CFTR Defekt eine klinisch manifeste Lungenerkrankung resultiert. Dieser Beitrag gibt einen Überblick über gegenwärtig postulierte Hypothesen normaler und veränderter CFTR-Funktion und deren Folgen für die Homöostase endobronchialer Sekrete. Daraus abzuleitende neue therapeutische Ansätze werden diskutiert. Durch pharmakologische Korrektur der Ionenkanalfunktion von CFTR, bzw. durch Rekrutierung alternativer Ionenkanäle in einem frühen Krankheitsstadium könnte die Entstehung von irreversiblen Lungenveränderungen bei CF in Zukunft verhindert werden.

Abstract

Today, the majority of cystic fibrosis (CF) patients treated in Germany have reached adulthood. However, with increasing age the morbidity and frequency of severe pulmonary complications continues to rise. Further optimization of conventional therapy alone will be insufficient to compensate for this development. In recent years, there has been impressive progress in our understanding of the molecular basis of the CF gene and its product, the cystic fibrosis transmembrane conductance regulator (CFTR). This knowledge can now be applied to develop new therapeutic strategies. However, important questions remain to be solved, i. e., little is known about the pathways that link the malfunctioning of the CFTR protein with the observed clinical phenotype. This review briefly touches on CF genetics as it applies to lung disease and will focus on the current hypotheses of CFTR (dys)function and its impact on pulmonary fluid homeostasis. New treatment options that target the molecular basis of the disease will be discussed.

Literatur

  • 1 Ratjen F, Doring G. Cystic fibrosis.  Lancet. 2003;  361 681-689
  • 2 Stern M, Sens B, Wiedemann B. et al .Qualitätssicherung Mukoviszidose - Überblick über den Gesundheitszustand der Patienten in Deutschland 2003. Zentrum für Qualitätsmanagement im Gesundheitswesen Hannover, www.muco.info 2004
  • 3 Hirche T O, Smaczny C, Mallinckrodt C von. et al . Pulmonale Manifestation der Mukoviszidose im Erwachsenenalter.  Dtsch Arztebl. 2003;  100 264-270
  • 4 Davies P B, Drumm M, Konstan M W. Cystic fibrosis: State of the Art.  Am J Respir Crit Care Med. 1996;  154 1229-1256
  • 5 Reinhardt D, Goetz M, Kraemer R H. Cystische Fibrose. Berlin: Springer 2001
  • 6 Kerem E, Conway S, Elborn S. et al . Standards of care for patients with cystic fibrosis: a European consensus.  J Cyst Fibros. 2005;  4 7-26
  • 7 Kerem B, Rommens J M, Buchanan J A. et al . Identification of the cystic fibrosis gene: genetic analysis.  Science. 1989;  245 1073-1080
  • 8 Rommens J M, Iannuzzi M C, Kerem B. et al . Identification of the cystic fibrosis gene: chromosome walking and jumping.  Science. 1989;  245 1059-1065
  • 9 European respiratory society . European lung white book 2003.  ERSJ. 2003;  1 pp. 89-95
  • 10 Tsui L C, Durie P. Genotype and phenotype in cystic fibrosis.  Hosp Pract. 1997;  32 115-134
  • 11 Ward C L, Kopito R R. Intracellular turnover of cystic fibrosis transmembrane conductance regulator. Inefficient processing and rapid degradation of wild-type and mutant proteins.  J Biol Chem. 1994;  269 25 710-25 718
  • 12 Ward C L, Omura S, Kopito R R. Degradation of CFTR by the ubiquitin-proteasome pathway.  Cell. 1995;  83 121-127
  • 13 Goldberg A L. Protein degradation and protection against misfolded or damaged proteins.  Nature. 2003;  426 895-899
  • 14 Anderson M P, Welsh M J. Regulation by ATP and ADP of CFTR chloride channels that contain mutant nucleotide-binding domains.  Science. 1992;  257 1701-1704
  • 15 Sheppard D N, Rich D P, Ostedgaard L S. et al . Mutations in CFTR associated with mild-disease-form Cl-channels with altered pore properties.  Nature. 1993;  362 160-164
  • 16 Haardt M, Benharouga M, Lechardeur D. et al . C-terminal truncations destabilize the cystic fibrosis transmembrane conductance regulator without impairing its biogenesis. A novel class of mutation.  J Biol Chem. 1999;  274 21 873-21 877
  • 17 Welsh M J, Ramsey B W, Accurso F. et al .Cystic fibrosis. In: Sciver CL, Sly WS, Valle D (Hrsg). The molecular and metabolic basis of inherited disease. New York: McGraw-Hill 2001: pp. 5121-5188
  • 18 Correlation between genotype and phenotype in patients with cystic fibrosis. The Cystic Fibrosis Genotype-Phenotype Consortium.  N Engl J Med. 1993;  329 1308-1313
  • 19 Zielenski J, Tsui L C. Cystic fibrosis: genotypic and phenotypic variations.  Annu Rev Genet. 1995;  29 777-807
  • 20 Kerem E, Corey M, Kerem B S. et al . The relation between genotype and phenotype in cystic fibrosis - analysis of the most common mutation (delta F508).  N Engl J Med. 1990;  323 1517-1522
  • 21 Davies J C, Griesenbach U, Alton E. Modifier genes in cystic fibrosis.  Pediatr Pulmonol. 2005;  39 383-391
  • 22 Garred P, Pressler T, Madsen H O. et al . Association of mannose-binding lectin gene heterogeneity with severity of lung disease and survival in cystic fibrosis.  J Clin Invest. 1999;  104 431-437
  • 23 Hull J, Thomson A H. Contribution of genetic factors other than CFTR to disease severity in cystic fibrosis.  Thorax. 1998;  53 1018-1021
  • 24 Chow C W, Landau L I, Taussig L M. Bronchial mucous glands in the newborn with cystic fibrosis.  Eur J Pediatr. 1982;  139 240-243
  • 25 Knowles M R, Boucher R C. Mucus clearance as a primary innate defense mechanism for mammalian airways.  J Clin Invest. 2002;  109 571-577
  • 26 Matsui H, Randell S H, Peretti S W. et al . Coordinated clearance of periciliary liquid and mucus from airway surfaces.  J Clin Invest. 1998;  102 1125-1131
  • 27 Jayaraman S, Joo N S, Reitz B. et al . Submucosal gland secretions in airways from cystic fibrosis patients have normal [Na(+)] and pH but elevated viscosity.  Proc Natl Acad Sci U S A. 2001;  98 8119-8123
  • 28 Joo N S, Irokawa T, Wu J V. et al . Absent secretion to vasoactive intestinal peptide in cystic fibrosis airway glands.  J Biol Chem. 2002;  277 50 710-50 715
  • 29 Boucher R C. New concepts of the pathogenesis of cystic fibrosis lung disease.  Eur Respir J. 2004;  23 146-158
  • 30 Voilley N, Galibert A, Bassilana F. et al . The amiloride-sensitive Na+ channel: from primary structure to function.  Comp Biochem Physiol Physiol. 1997;  118 193-200
  • 31 Matsui H, Grubb B R, Tarran R. et al . Evidence for periciliary liquid layer depletion, not abnormal ion composition, in the pathogenesis of cystic fibrosis airways disease.  Cell. 1998;  95 1005-1015
  • 32 Fuchs H J, Borowitz D S, Christiansen D H. et al . Effect of aerosolized recombinant human DNase on exacerbations of respiratory symptoms and on pulmonary function in patients with cystic fibrosis. The Pulmozyme Study Group.  N Engl J Med. 1994;  331 637-642
  • 33 Quan J M, Tiddens H A, Sy J P. et al . A two-year randomized, placebo-controlled trial of dornase alfa in young patients with cystic fibrosis with mild lung function abnormalities.  J Pediatr. 2001;  139 813-820
  • 34 Ratjen F, Paul K, Koningsbruggen S van. et al . DNA concentrations in BAL fluid of cystic fibrosis patients with early lung disease: influence of treatment with dornase alpha.  Pediatr Pulmonol. 2005;  39 1-4
  • 35 Smyth A, Walters S. Prophylactic antibiotics for cystic fibrosis.  Cochrane Database Syst Rev. 2003;  2 CD001912
  • 36 Ratjen F, Comes G, Paul K. et al . Effect of continuous antistaphylococcal therapy on the rate of P. aeruginosa acquisition in patients with cystic fibrosis.  Pediatr Pulmonol. 2001;  31 13-16
  • 37 Breen L, Aswani N. Elective versus symptomatic intravenous antibiotic therapy for cystic fibrosis.  Cochrane Database Syst Rev. 2001;  4 CD002767
  • 38 Doring G, Conway S P, Heijerman H G. et al . Antibiotic therapy against Pseudomonas aeruginosa in cystic fibrosis: a European consensus.  Eur Respir J. 2000;  16 749-767
  • 39 Mallinckrodt C von, Smaczny C, Hirche T O. et al . Lungentransplantation bei Mukoviszidose.  Atemw Lungenkrkh. 2005;  31 64-70
  • 40 Johnson L G, Boyles S E, Wilson J. et al . Normalization of raised sodium absorption and raised calcium-mediated chloride secretion by adenovirus-mediated expression of cystic fibrosis transmembrane conductance regulator in primary human cystic fibrosis airway epithelial cells.  J Clin Invest. 1995;  95 1377-1382
  • 41 Zabner J, Couture L A, Gregory R J. et al . Adenovirus-mediated gene transfer transiently corrects the chloride transport defect in nasal epithelia of patients with cystic fibrosis.  Cell. 1993;  75 207-216
  • 42 Crystal R G, McElvaney N G, Rosenfeld M A. et al . Administration of an adenovirus containing the human CFTR cDNA to the respiratory tract of individuals with cystic fibrosis.  Nat Genet. 1994;  8 42-51
  • 43 Ferrari S, Griesenbach U, Geddes D M. et al . Immunological hurdles to lung gene therapy.  Clin Exp Immunol. 2003;  132 1-8
  • 44 Yang Y, Li Q, Ertl H C. et al . Cellular and humoral immune responses to viral antigens create barriers to lung-directed gene therapy with recombinant adenoviruses.  J Virol. 1995;  69 2004-2015
  • 45 Zabner J, Ramsey B W, Meeker D P. et al . Repeat administration of an adenovirus vector encoding cystic fibrosis transmembrane conductance regulator to the nasal epithelium of patients with cystic fibrosis.  J Clin Invest. 1996;  97 1504-1511
  • 46 Moss R B, Rodman D, Spencer L T. et al . Repeated adeno-associated virus serotype 2 aerosol-mediated cystic fibrosis transmembrane regulator gene transfer to the lungs of patients with cystic fibrosis: a multicenter, double-blind, placebo-controlled trial.  Chest. 2004;  125 509-521
  • 47 Brzoska M, Langer K, Coester C. et al . Incorporation of biodegradable nanoparticles into human airway epithelium cells-in vitro study of the suitability as a vehicle for drug or gene delivery in pulmonary diseases.  Biochem Biophys Res Commun. 2004;  318 562-570
  • 48 Ziady A G, Davis P B, Konstan M W. Non-viral gene transfer therapy for cystic fibrosis.  Expert Opin Biol Ther. 2003;  3 449-458
  • 49 Konstan M W, Davis P B, Wagener J S. et al . Compacted DNA nanoparticles administered to the nasal mucosa of cystic fibrosis subjects are safe and demonstrate partial to complete cystic fibrosis transmembrane regulator reconstitution.  Hum Gene Ther. 2004;  15 1255-1269
  • 50 Luton D, Oudrhiri N, de Lagausie P. et al . Gene transfection into fetal sheep airways in utero using guanidinium-cholesterol cationic lipids.  J Gene Med. 2004;  6 328-336
  • 51 Keswani S G, Crombleholme T M. Gene transfer to the tracheobronchial tree: implications for fetal gene therapy for cystic fibrosis.  Semin Pediatr Surg. 2004;  13 44-52
  • 52 Grove J E, Lutzko C, Priller J. et al . Marrow-derived cells as vehicles for delivery of gene therapy to pulmonary epithelium.  Am J Respir Cell Mol Biol. 2002;  27 645-651
  • 53 Howard M, Frizzell R A, Bedwell D M. Aminoglycoside antibiotics restore CFTR function by overcoming premature stop mutations.  Nat Med. 1996;  2 467-469
  • 54 Clancy J P, Bebok Z, Ruiz F. et al . Evidence that systemic gentamicin suppresses premature stop mutations in patients with cystic fibrosis.  Am J Respir Crit Care Med. 2001;  163 1683-1692
  • 55 Zeitlin P L, Diener-West M, Rubenstein R C. et al . Evidence of CFTR function in cystic fibrosis after systemic administration of 4-phenylbutyrate.  Mol Ther. 2002;  6 119-126
  • 56 Powell K, Zeitlin P L. Therapeutic approaches to repair defects in deltaF508 CFTR folding and cellular targeting.  Adv Drug Deliv Rev. 2002;  54 1395-1408
  • 57 Pasyk E A, Foskett J K. Mutant (delta F508) cystic fibrosis transmembrane conductance regulator Cl-channel is functional when retained in endoplasmic reticulum of mammalian cells.  J Biol Chem. 1995;  270 12 347-12 350
  • 58 Zeitlin P. Can curcumin cure cystic fibrosis?.  N Engl J Med. 2004;  351 606-608
  • 59 Egan M E, Pearson M, Weiner S A. et al . Curcumin, a major constituent of turmeric, corrects cystic fibrosis defects.  Science. 2004;  304 600-602
  • 60 Song Y, Sonawane N D, Salinas D. et al . Evidence against the rescue of defective DeltaF508-CFTR cellular processing by curcumin in cell culture and mouse models.  J Biol Chem. 2004;  279 40 629-40 633
  • 61 Illek B, Zhang L, Lewis N C. et al . Defective function of the cystic fibrosis-causing missense mutation G551D is recovered by genistein.  Am J Physiol. 1999;  277 C833-C839
  • 62 Kelley T J, Thomas K, Milgram L J. et al . In vivo activation of the cystic fibrosis transmembrane conductance regulator mutant deltaF508 in murine nasal epithelium.  Proc Natl Acad Sci USA. 1997;  94 2604-2608
  • 63 Galietta L V, Jayaraman S, Verkman A S. Cell-based assay for high-throughput quantitative screening of CFTR chloride transport agonists.  Am J Physiol Cell Physiol. 2001;  281 C1734-C1742
  • 64 Lee T. Scientific report-Seventeenth annual north american cystic fibrosis conference. online: www cysticfibrosismedicine.com. 2003
  • 65 Kerem E, Bistritzer T, Hanukoglu A. et al . Pulmonary epithelial sodium-channel dysfunction and excess airway liquid in pseudohypoaldosteronism.  N Engl J Med. 1999;  341 156-162
  • 66 Mall M, Grubb B R, Harkema J R. et al . Increased airway epithelial Na+ absorption produces cystic fibrosis-like lung disease in mice.  Nat Med. 2004;  10 487-493
  • 67 Graham A, Hasani A, Alton E W. et al . No added benefit from nebulized amiloride in patients with cystic fibrosis.  Eur Respir J. 1993;  6 1243-1248
  • 68 Hirsh A J, Sabater J R, Zamurs A. et al . Evaluation of second generation amiloride analogs as therapy for cystic fibrosis lung disease.  J Pharmacol Exp Ther. 2004;  311 929-938
  • 69 Nilius B, Droogmans G. Amazing chloride channels: an overview.  Acta Physiol Scand. 2003;  177 119-147
  • 70 Cuppoletti J, Tewari K P, Sherry A M. et al . Activation of human CIC-2 Cl- channels: implications for cystic fibrosis.  Clin Exp Pharmacol Physiol. 2000;  27 896-900
  • 71 Zeitlin P L, Boyle M P, Guggino W B. et al . A phase I trial of intranasal Moli1901 for cystic fibrosis.  Chest. 2004;  125 143-149
  • 72 Benali R, Pierrot D, Zahm J M. et al . Effect of extracellular ATP and UTP on fluid transport by human nasal epithelial cells in culture.  Am J Respir Cell Mol Biol. 1994;  10 363-368
  • 73 Mall M, Wissner A, Gonska T. et al . Inhibition of amiloride-sensitive epithelial Na(+) absorption by extracellular nucleotides in human normal and cystic fibrosis airways.  Am J Respir Cell Mol Biol. 2000;  23 755-761
  • 74 Lethem M I, Dowell M L, Scott M van. et al . Nucleotide regulation of goblet cells in human airway epithelial explants: normal exocytosis in cystic fibrosis.  Am J Respir Cell Mol Biol. 1993;  9 315-322
  • 75 Morse D M, Smullen J L, Davis C W. Differential effects of UTP, ATP, and adenosine on ciliary activity of human nasal epithelial cells.  Am J Physiol Cell Physiol. 2001;  280 C1485-C1497
  • 76 Gobran L I, Xu Z X, Lu Z. et al . P2u purinoceptor stimulation of surfactant secretion coupled to phosphatidylcholine hydrolysis in type II cells.  Am J Physiol. 1994;  267 L625-L633
  • 77 Deterding R, Retsch-Bogart G, Milgram L. et al . Safety and tolerability of denufosol tetrasodium inhalation solution, a novel P2Y2 receptor agonist: results of a phase 1/phase 2 multicenter study in mild to moderate cystic fibrosis.  Pediatr Pulmonol. 2005;  39 339-348
  • 78 Robinson M, Hemming A L, Regnis J A. et al . Effect of increasing doses of hypertonic saline on mucociliary clearance in patients with cystic fibrosis.  Thorax. 1997;  52 900-903
  • 79 Ballmann M, Hardt H von der. Hypertonic saline and recombinant human DNase: a randomised cross-over pilot study in patients with cystic fibrosis.  J Cyst Fibros. 2002;  1 35-37
  • 80 Tarran R, Grubb B R, Parsons D. et al . The CF salt controversy: in vivo observations and therapeutic approaches.  Mol Cell. 2001;  8 149-158
  • 81 Zabner J, Seiler M P, Launspach J L. et al . The osmolyte xylitol reduces the salt concentration of airway surface liquid and may enhance bacterial killing.  Proc Natl Acad Sci U S A. 2000;  97 11 614-11 619
  • 82 Feng W, Garrett H, Speert D P. et al . Improved clearability of cystic fibrosis sputum with dextran treatment in vitro.  Am J Respir Crit Care Med. 1998;  157 710-714
  • 83 Bryan R, Feldman M, Jawetz S C. et al . The effects of aerosolized dextran in a mouse model of Pseudomonas aeruginosa pulmonary infection.  J Infect Dis. 1999;  179 1449-1458
  • 84 Barghouthi S, Guerdoud L M, Speert D P. Inhibition by dextran of Pseudomonas aeruginosa adherence to epithelial cells.  Am J Respir Crit Care Med. 1996;  154 1788-1793

Prof. Dr. Thomas O.F. Wagner

Pneumologie/Allergologie · Klinikum der Johann Wolfgang Goethe-Universität

Theodor-Stern-Kai 7

60590 Frankfurt am Main

Email: t.wagner@em.uni-frankfurt.de

    >