Klinische Neurophysiologie 2005; 36(4): 186-201
DOI: 10.1055/s-2005-915325
Originalia
© Georg Thieme Verlag KG Stuttgart · New York

Therapeutische Anwendung der repetitiven transkraniellen Magnetstimulation in der Neurologie - Möglichkeiten und Grenzen

Therapeutic Applications of Repetitive Transcranial Magnetic Stimulation in Neurological Disorders - Potential and LimitationsM.  Pötter1 , M.  Peller1 , 2 , H.  R.  Siebner1 , 2
  • 1Klinik für Neurologie, Christian-Albrechts-Universität, Kiel
  • 2NeuroImage-Nord, Hamburg-Kiel-Lübeck
Further Information

Publication History

Publication Date:
08 December 2005 (online)

Zusammenfassung

Dieses Übersichtsreferat fasst den derzeitigen Kenntnisstand zum therapeutischen Einsatz der repetitiven transkraniellen Magnetstimulation (rTMS) in der Neurologie zusammen. Zunächst beschreiben wir die derzeit bekannten neuromodulatorischen Effekte der rTMS im gesunden Gehirn und leiten daraus Konzepte für den therapeutischen Einsatz der rTMS bei neurologischen Erkrankungen ab. Es folgt eine Zusammenfassung der Studien, welche die rTMS bei Patienten mit Morbus Parkinson, chronischen Schmerzen oder Tinnitus eingesetzt haben, um eine motorische oder sensorische Dysfunktion zu behandeln. Anhand dieser Beispiele werden die Grenzen der derzeitigen Therapieversuche dargelegt. Als Ausblick werden Forschungsansätze aufgezeigt, die helfen können, die neurobiologischen Effekte der rTMS im erkrankten Gehirn besser zu verstehen und die therapeutische Effizienz der rTMS zu steigern.

Abstract

This paper reviews the current knowledge regarding the therapeutic application of repetitive transcranial magnetic stimulation (rTMS) in the field of clinical neurology. First, we summarize the neuromodulatory effects of rTMS in the healthy brain and outline the concepts behind the therapeutic use of rTMS. Second, we review clinical trials that have used rTMS to improve motor dysfunction in patients with Parkinson's disease or to reduce sensory dysfunction in patients with chronic pain or tinnitus. Based on this work, we discuss the main limitations of current attempts to treat neurological disorders with rTMS. Finally, we outline future avenues of research that will provide deeper insights into the neurobiological changes induced by rTMS and help to increase the therapeutic efficacy of rTMS.

Literatur

  • 1 Hallett M. Transcranial magnetic stimulation and the human brain.  Nature. 2000;  406 147-150
  • 2 Siebner H R, Rothwell J. Transcranial magnetic stimulation: new insights into representational cortical plasticity.  Exp Brain Res. 2003;  148 1-16
  • 3 Martin J L, Barbanoj M J, Schlaepfer T E, Clos S, Perez V, Kulisevsky J, Gironell A. Transcranial magnetic stimulation for treating depression. Cochrane Database Syst Rev 2002 CD003493
  • 4 Martin J L, Barbanoj M J, Schlaepfer T E, Thompson E, Perez V, Kulisevsky J. Repetitive transcranial magnetic stimulation for the treatment of depression. Systematic review and meta-analysis.  Br J Psychiatry. 2003;  182 480-491
  • 5 Couturier J L. Efficacy of rapid-rate repetitive transcranial magnetic stimulation in the treatment of depression: a systematic review and meta-analysis.  J Psychiatry Neurosci. 2005;  30 83-90
  • 6 Wassermann E M. Risk and safety of repetitive transcranial magnetic stimulation: report and suggested guidelines from the International Workshop on the Safety of Repetitive Transcranial Magnetic Stimulation, June 5 - 7, 1996.  Electroencephalogr Clin Neurophysiol. 1998;  108 1-16
  • 7 Maeda F, Keenan J P, Tormos J M, Topka H, Pascual-Leone A. Modulation of corticospinal excitability by repetitive transcranial magnetic stimulation.  Clin Neurophysiol. 2000;  111 800-805
  • 8 Maeda F, Keenan J P, Tormos J M, Topka H, Pascual-Leone A. Interindividual variability of the modulatory effects of repetitive transcranial magnetic stimulation on cortical excitability.  Exp Brain Res. 2000;  133 425-430
  • 9 Rizzo V, Siebner H R, Modugno N, Pesenti A, Munchau A, Gerschlager W, Webb R M, Rothwell J C. Shaping the excitability of human motor cortex with premotor rTMS.  J Physiol. 2004;  554 483-495
  • 10 Boroojerdi B, Meister I G, Foltys H, Sparing R, Cohen L G, Topper R. Visual and motor cortex excitability: a transcranial magnetic stimulation study.  Clin Neurophysiol. 2002;  113 1501-1504
  • 11 Touge T, Gerschlager W, Brown P, Rothwell J C. Are the after-effects of low-frequency rTMS on motor cortex excitability due to changes in the efficacy of cortical synapses?.  Clin Neurophysiol. 2001;  112 2138-2145
  • 12 Peinemann A, Reimer B, Loer C, Quartarone A, Munchau A, Conrad B, Siebner H R. Long-lasting increase in corticospinal excitability after 1800 pulses of subthreshold 5 Hz repetitive TMS to the primary motor cortex.  Clin Neurophysiol. 2004;  115 1519-1526
  • 13 Huang Y Z, Edwards M J, Rounis E, Bhatia K P, Rothwell J C. Theta burst stimulation of the human motor cortex.  Neuron. 2005;  45 201-206
  • 14 Sommer M, Lang N, Tergau F, Paulus W. Neuronal tissue polarization induced by repetitive transcranial magnetic stimulation?.  Neuroreport. 2002;  13 809-811
  • 15 Baumer T, Lange R, Liepert J, Weiller C, Siebner H R, Rothwell J C, Munchau A. Repeated premotor rTMS leads to cumulative plastic changes of motor cortex excitability in humans.  Neuroimage. 2003;  20 550-560
  • 16 Chen R, Classen J, Gerloff C, Celnik P, Wassermann E M, Hallett M, Cohen L G. Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation.  Neurology. 1997;  48 1398-1403
  • 17 Pascual-Leone A, Valls-Sole J, Brasil-Neto J P, Cammarota A, Grafman J, Hallett M. Akinesia in Parkinson's disease. II. Effects of subthreshold repetitive transcranial motor cortex stimulation.  Neurology. 1994;  44 892-898
  • 18 Lazzaro V Di, Oliviero A, Mazzone P, Pilato F, Saturno E, Dileone M, Insola A, Tonali P A, Rothwell J C. Short-term reduction of intracortical inhibition in the human motor cortex induced by repetitive transcranial magnetic stimulation.  Exp Brain Res. 2002;  147 108-113
  • 19 Quartarone A, Bagnato S, Rizzo V, Morgante F, Santaposangelo A, Battaglia F, Messina C, Siebner H R, Girlanda P. Distinct changes in cortical and spinal excitability following high-frequency repetitive TMS to the human motor cortex.  Exp Brain Res. 2005;  161 114-124
  • 20 Gilio F, Rizzo V, Siebner H R, Rothwell J C. Effects on the right motor hand-area excitability produced by low-frequency rTMS over human contralateral homologous cortex.  J Physiol. 2003;  551 563-573
  • 21 Tsuji T, Rothwell J C. Long lasting effects of rTMS and associated peripheral sensory input on MEPs, SEPs and transcortical reflex excitability in humans.  J Physiol. 2002;  540 367-376
  • 22 Boroojerdi B, Prager A, Muellbacher W, Cohen L G. Reduction of human visual cortex excitability using 1-Hz transcranial magnetic stimulation.  Neurology. 2000;  54 1529-1531
  • 23 Siebner H R, Lang N, Rizzo V, Nitsche M A, Paulus W, Lemon R N, Rothwell J C. Preconditioning of low-frequency repetitive transcranial magnetic stimulation with transcranial direct current stimulation: evidence for homeostatic plasticity in the human motor cortex.  J Neurosci. 2004;  24 3379-3385
  • 24 Lang N, Siebner H R, Ernst D, Nitsche M A, Paulus W, Lemon R N, Rothwell J C. Preconditioning with transcranial direct current stimulation sensitizes the motor cortex to rapid-rate transcranial magnetic stimulation and controls the direction of after-effects.  Biol Psychiatry. 2004;  56 634-639
  • 25 Ziemann U, Ilic T V, Pauli C, Meintzschel F, Ruge D. Learning modifies subsequent induction of long-term potentiation-like and long-term depression-like plasticity in human motor cortex.  J Neurosci. 2004;  24 1666-1672
  • 26 Fierro B, Brighina F, Vitello G, Piazza A, Scalia S, Giglia G, Daniele O, Pascual-Leone A. Modulatory effects of low- and high-frequency repetitive transcranial magnetic stimulation on visual cortex of healthy subjects undergoing light deprivation.  J Physiol. 2005;  565 659-665
  • 27 Valero-Cabre A, Oliveri M, Gangitano M, Pascual-Leone A. Modulation of spinal cord excitability by subthreshold repetitive transcranial magnetic stimulation of the primary motor cortex in humans.  Neuroreport. 2001;  12 3845-3848
  • 28 Gerschlager W, Siebner H R, Rothwell J. Decreased corticospinal excitability after subthreshold 1 Hz rTMS over lateral premotor cortex.  Neurology. 2001;  57 449-455
  • 29 Munchau A, Bloem B R, Irlbacher K, Trimble M R, Rothwell J C. Functional connectivity of human premotor and motor cortex explored with repetitive transcranial magnetic stimulation.  J Neurosci. 2002;  22 554-561
  • 30 Siebner H R, Peller M, Willoch F, Minoshima S, Boecker H, Auer C, Drzezga A, Conrad B, Bartenstein P. Lasting cortical activation after repetitive TMS of the motor cortex: a glucose metabolic study.  Neurology. 2000;  54 956-963
  • 31 Siebner H R, Filipovic S R, Rowe J B, Cordivari C, Gerschlager W, Rothwell J C, Frackowiak R S, Bhatia K P. Patients with focal arm dystonia have increased sensitivity to slow-frequency repetitive TMS of the dorsal premotor cortex.  Brain. 2003;  126 2710-2725
  • 32 Lee L, Siebner H R, Rowe J B, Rizzo V, Rothwell J C, Frackowiak R S, Friston K J. Acute remapping within the motor system induced by low-frequency repetitive transcranial magnetic stimulation.  J Neurosci. 2003;  23 5308-5318
  • 33 Strafella A P, Paus T, Barrett J, Dagher A. Repetitive transcranial magnetic stimulation of the human prefrontal cortex induces dopamine release in the caudate nucleus.  J Neurosci. 2001;  21 RC157
  • 34 Strafella A P, Paus T, Fraraccio M, Dagher A. Striatal dopamine release induced by repetitive transcranial magnetic stimulation of the human motor cortex.  Brain. 2003;  126 2609-2615
  • 35 Chen W H, Mima T, Siebner H R, Oga T, Hara H, Satow T, Begum T, Nagamine T, Shibasaki H. Low-frequency rTMS over lateral premotor cortex induces lasting changes in regional activation and functional coupling of cortical motor areas.  Clin Neurophysiol. 2003;  114 1628-1637
  • 36 Rounis E, Lee L, Siebner H R, Rowe J B, Friston K J, Rothwell J C, Frackowiak R S. Frequency specific changes in regional cerebral blood flow and motor system connectivity following rTMS to the primary motor cortex.  Neuroimage. 2005;  26 164-176
  • 37 Siebner H R, Tormos J M, Ceballos-Baumann A O, Auer C, Catala M D, Conrad B, Pascual-Leone A. Low-frequency repetitive transcranial magnetic stimulation of the motor cortex in writer's cramp.  Neurology. 1999;  52 529-537
  • 38 Siebner H R, Auer C, Ceballos-Baumann A, Conrad B. Has repetitive transcranial magnetic stimulation of the primary motor hand area a therapeutic application in writer's cramp?.  Electroencephalogr Clin Neurophysiol. 1999;  51, Supplement 265-275
  • 39 Tergau F, Naumann U, Paulus W, Steinhoff B J. Low-frequency repetitive transcranial magnetic stimulation improves intractable epilepsy.  Lancet. 1999;  353 2209
  • 40 Gironell A, Kulisevsky J, Lorenzo J, Barbanoj M, Pascual-Sedano B, Otermin P. Transcranial magnetic stimulation of the cerebellum in essential tremor: a controlled study.  Arch Neurol. 2002;  59 413-417
  • 41 Siebner H R, Rossmeier C, Mentschel C, Peinemann A, Conrad B. Short-term motor improvement after sub-threshold 5-Hz repetitive transcranial magnetic stimulation of the primary motor hand area in Parkinson's disease.  J Neurol Sci. 2000;  178 91-94
  • 42 Siebner H R, Mentschel C, Auer C, Conrad B. Repetitive transcranial magnetic stimulation has a beneficial effect on bradykinesia in Parkinson's disease.  Neuroreport. 1999;  10 589-594
  • 43 Khedr E M, Ahmed M A, Fathy N, Rothwell J C. Therapeutic trial of repetitive transcranial magnetic stimulation after acute ischemic stroke.  Neurology. 2005;  65 466-468
  • 44 Duque J, Hummel F, Celnik P, Murase N, Mazzocchio R, Cohen L G. Transcallosal inhibition in chronic subcortical stroke.  Neuroimage. 2005;  Epub ahead of print
  • 45 Thut G, Nietzel A, Pascual-Leone A. Dorsal posterior parietal rTMS affects voluntary orienting of visuospatial attention.  Cereb Cortex. 2005;  15 628-638
  • 46 Brighina F, Bisiach E, Oliveri M, Piazza A, Bua V La, Daniele O, Fierro B. 1 Hz repetitive transcranial magnetic stimulation of the unaffected hemisphere ameliorates contralesional visuospatial neglect in humans.  Neurosci Lett. 2003;  336 131-133
  • 47 Oliveri M, Bisiach E, Brighina F, Piazza A, Bua V La, Buffa D, Fierro B. rTMS of the unaffected hemisphere transiently reduces contralesional visuospatial hemineglect.  Neurology. 2001;  57 1338-1340
  • 48 Quartarone A, Bagnato S, Rizzo L, Siebner H R, Dattola V, Scalfari A, Morgante F, Battaglia F, Romano M, Girlanda P. Abnormal associative plasticity of the human motor cortex in writer's cramp.  Brain. 2003;  126 2586-2596
  • 49 Quartarone A, Rizzo V, Bagnato S, Morgante F, Sant'Angelo A, Romano M, Crupi D, Girlanda P, Rothwell J C, Siebner H R. Homeostatic-like plasticity of the primary motor hand area is impaired in focal hand dystonia.  Brain. 2005;  128 1943-1950
  • 50 Mir P, Matsunaga K, Gilio F, Quinn N P, Siebner H R, Rothwell J C. Dopaminergic drugs restore facilitatory premotor-motor interactions in Parkinson disease.  Neurology. 2005;  64 1906-1912
  • 51 Buhmann C, Gorsler A, Baumer T, Hidding U, Demiralay C, Hinkelmann K, Weiller C, Siebner H R, Munchau A. Abnormal excitability of premotor-motor connections in de novo Parkinson's disease.  Brain. 2004;  127 2732-2746
  • 52 Braak H, Ghebremedhin E, Rub U, Bratzke H, Tredici K Del. Stages in the development of Parkinson's disease-related pathology.  Cell Tissue Res. 2004;  318 121-134
  • 53 Bergman H, Deuschl G. Pathophysiology of Parkinson's disease: from clinical neurology to basic neuroscience and back.  Mov Disord. 2002;  17, Suppl 3 S28-40
  • 54 Agid Y, Arnulf I, Bejjani P, Bloch F, Bonnet A M, Damier P, Dubois B, Francois C, Houeto J L, Iacono D, Karachi C, Mesnage V, Messouak O, Vidailhet M, Welter M L, Yelnik J. Parkinson's disease is a neuropsychiatric disorder.  Adv Neurol. 2003;  91 365-370
  • 55 Brooks D J. Cerebral blood flow activation studies in Parkinson's disease.  Adv Neurol. 2001;  86 225-235
  • 56 Haslinger B, Erhard P, Kampfe N, Boecker H, Rummeny E, Schwaiger M, Conrad B, Ceballos-Baumann A O. Event-related functional magnetic resonance imaging in Parkinson's disease before and after levodopa.  Brain. 2001;  124 558-570
  • 57 Jenkins I H, Fernandez W, Playford E D, Lees A J, Frackowiak R S, Passingham R E, Brooks D J. Impaired activation of the supplementary motor area in Parkinson's disease is reversed when akinesia is treated with apomorphine.  Ann Neurol. 1992;  32 749-757
  • 58 Jahanshahi M, Jenkins I H, Brown R G, Marsden C D, Passingham R E, Brooks D J. Self-initiated versus externally triggered movements. I. An investigation using measurement of regional cerebral blood flow with PET and movement-related potentials in normal and Parkinson's disease subjects.  Brain. 1995;  118 913-933
  • 59 Playford E D, Jenkins I H, Passingham R E, Nutt J, Frackowiak R S, Brooks D J. Impaired mesial frontal and putamen activation in Parkinson's disease: a positron emission tomography study.  Ann Neurol. 1992;  32 151-161
  • 60 Sabatini U, Boulanouar K, Fabre N, Martin F, Carel C, Colonnese C, Bozzao L, Berry I, Montastruc J L, Chollet F, Rascol O. Cortical motor reorganization in akinetic patients with Parkinson's disease: a functional MRI study.  Brain. 2000;  123 394-403
  • 61 Buhmann C, Glauche V, Sturenburg H J, Oechsner M, Weiller C, Buchel C. Pharmacologically modulated fMRI - cortical responsiveness to levodopa in drug-naive hemiparkinsonian patients.  Brain. 2003;  126 451-461
  • 62 Ceballos-Baumann A O, Boecker H, Bartenstein P, Falkenhayn I von, Riescher H, Conrad B, Moringlane J R, Alesch F. A positron emission tomographic study of subthalamic nucleus stimulation in Parkinson disease: enhanced movement-related activity of motor-association cortex and decreased motor cortex resting activity.  Arch Neurol. 1999;  56 997-1003
  • 63 Limousin P, Greene J, Pollak P, Rothwell J, Benabid A L, Frackowiak R. Changes in cerebral activity pattern due to subthalamic nucleus or internal pallidum stimulation in Parkinson's disease.  Ann Neurol. 1997;  42 283-291
  • 64 Ridding M C, Inzelberg R, Rothwell J C. Changes in excitability of motor cortical circuitry in patients with Parkinson's disease.  Ann Neurol. 1995;  37 181-188
  • 65 Lewis G N, Byblow W D. Altered sensorimotor integration in Parkinson's disease.  Brain. 2002;  125 2089-2099
  • 66 Cantello R, Gianelli M, Bettucci D, Civardi C, Angelis M S De, Mutani R. Parkinson's disease rigidity: magnetic motor evoked potentials in a small hand muscle.  Neurology. 1991;  41 1449-1456
  • 67 Priori A, Berardelli A, Inghilleri M, Accornero N, Manfredi M. Motor cortical inhibition and the dopaminergic system. Pharmacological changes in the silent period after transcranial brain stimulation in normal subjects, patients with Parkinson's disease and drug-induced parkinsonism.  Brain. 1994;  117 317-323
  • 68 Delwaide P J, Olivier E. Conditioning transcranial cortical stimulation (TCCS) by exteroceptive stimulation in parkinsonian patients.  Adv Neurol. 1990;  53 175-181
  • 69 Valls-Sole J, Pascual-Leone A, Brasil-Neto J P, Cammarota A, McShane L, Hallett M. Abnormal facilitation of the response to transcranial magnetic stimulation in patients with Parkinson's disease.  Neurology. 1994;  44 735-741
  • 70 Chen R, Kumar S, Garg R R, Lang A E. Impairment of motor cortex activation and deactivation in Parkinson's disease.  Clin Neurophysiol. 2001;  112 600-607
  • 71 Gaspar P, Duyckaerts C, Alvarez C, Javoy-Agid F, Berger B. Alterations of dopaminergic and noradrenergic innervations in motor cortex in Parkinson's disease.  Ann Neurol. 1991;  30 365-374
  • 72 Holler I, Siebner H R, Cunnington R, Gerschlager W. 5 Hz repetitive TMS increases anticipatory motor activity in the human cortex. Neurosci Lett 2005 in press
  • 73 Siebner H R, Mentschel C, Auer C, Lehner C, Conrad B. Repetitive transcranial magnetic stimulation causes a short-term increase in the duration of the cortical silent period in patients with Parkinson's disease.  Neurosci Lett. 2000;  284 147-150
  • 74 Siebner H R. Treatment of movement disorders. In: Hallett M, Chokroverty S (eds) Magnetic Stimulation in clinical Neurophysiology. Oxford; Butterworth & Heinemann 2004: 223-238
  • 75 Canavero S, Paolotti R. Extradural motor cortex stimulation for advanced Parkinson's disease: case report.  Mov Disord. 2000;  15 169-171
  • 76 Canavero S, Paolotti R, Bonicalzi V, Castellano G, Greco-Crasto S, Rizzo L, Davini O, Zenga F, Ragazzi P. Extradural motor cortex stimulation for advanced Parkinson disease: report of two cases.  J Neurosurgery. 2002;  97 1208-1211
  • 77 Lavano A, Piragine G, Iofrida G, Signorelli C D. Preliminary experience with unilateral low frequency epidural motor cortex stimulation in advanced Parkinson's disease.  Parkinsonism and related disorders. 2005;  11 200
  • 78 Valzania F, Nassetti S-A, Tropeani A, Sturiale C, Michelucci R, Tassinari C A. Motor cortex stimulation in Parkinson's disease (PD).  Parkinsonism and related disorders. 2005;  11 199-200
  • 79 Tergau F, Wassermann E M, Paulus W, Ziemann U. Lack of clinical improvement in patients with PD after low and high frequency repetitive transcranial magnetic stimulation.  Electroencephalogr Clin Neurophysiol. 1999;  51 281-288
  • 80 Siebner H R, Löer C, Mentschel C, Weindl D, Conrad B. Repetitive transcranial magnetic stimulation in Parkinson's disease and focal dystonia.  Clinical Neurophysiology. 2002;  Supplement 54 399-409
  • 81 Groot M de, Hermann W, Steffen J, Wagner A, Grahmann F. Contralateral and ipsilateral repetitive transcranial magnetic stimulation in Parkinson patients.  Nervenarzt. 2001;  72 932-938
  • 82 Pascual-Leone Pascual A, Catala D. Lasting beneficial effect of rapid-rate transcranial magnetic stimulation on slowness in Parkinson's disease.  Neurology. 1995;  45 A 315
  • 83 Raison F Von, Drouot X, Nguyen J P. et al . The clinical effects of repetitive stimulation on PD depend on stimulation frequency.  Neurology. 2000;  54 A281
  • 84 Lefaucheur J P, Drouot X, Raison F Von, Menard-Lefaucheur I, Cesaro P, Nguyen J P. Improvement of motor performance and modulation of cortical excitability by repetitive transcranial magnetic stimulation of the motor cortex in Parkinson's disease.  Clin Neurophysiol. 2004;  115 2530-2541
  • 85 Boylan L S, Pullman S L, Lisanby S H, Spicknall K E, Sackeim H A. Repetitive transcranial magnetic stimulation to SMA worsens complex movements in Parkinson's disease.  Clin Neurophysiol. 2001;  112 259-264
  • 86 Koch G, Oliveri M, Brusa L, Stanzione P, Torriero S, Caltagirone C. High-frequency rTMS improves time perception in Parkinson disease.  Neurology. 2004;  63 2405-2406
  • 87 Koch G, Brusa L, Caltagirone C, Peppe A, Oliveri M, Stanzione P, Centonze D. rTMS of supplementary motor area modulates therapy-induced dyskinesias in Parkinson disease.  Neurology. 2005;  65 623-625
  • 88 Fregni F, Santos C M, Myczkowski M L, Rigolino R, Gallucci-Neto J, Barbosa E R, Valente K D, Pascual-Leone A, Marcolin M A. Repetitive transcranial magnetic stimulation is as effective as fluoxetine in the treatment of depression in patients with Parkinson's disease.  J Neurol Neurosurg Psychiatry. 2004;  75 1171-1174
  • 89 Boggio P S, Fregni F, Bermpohl F, Mansur C G, Rosa M, Rumi D O, Barbosa E R, Odebrecht Rosa M, Pascual-Leone A, Rigonatti S P, Marcolin M A, Araujo Silva M T. Effect of repetitive TMS and fluoxetine on cognitive function in patients with Parkinson's disease and concurrent depression.  Mov Disord. 2005;  20 1178-1184
  • 90 Mally J, Stone T W. Improvement in Parkinsonian symptoms after repetitive transcranial magnetic stimulation.  J Neurol Sci. 1999;  162 179-184
  • 91 Mally J, Stone T W. Therapeutic and „dose-dependent” effect of repetitive microelectroshock induced by transcranial magnetic stimulation in Parkinson's disease.  J Neurosci Res. 1999;  57 935-940
  • 92 Mally J, Farkas R, Tothfalusi L, Stone T W. Long-term follow-up study with repetitive transcranial magnetic stimulation (rTMS) in Parkinson's disease.  Brain Res Bull. 2004;  64 259-263
  • 93 Shimamoto H, Takasaki K, Shigemori M, Imaizumi T, Ayabe M, Shoji H. Therapeutic effect and mechanism of repetitive transcranial magnetic stimulation in Parkinson's disease.  J Neurol. 2001;  248, Suppl 3 III48-52
  • 94 Okabe S, Ugawa Y, Kanazawa I. 0.2-Hz repetitive transcranial magnetic stimulation has no add-on effects as compared to a realistic sham stimulation in Parkinson's disease.  Mov Disord. 2003;  18 382-388
  • 95 Khedr E M, Farweez H M, Islam H. Therapeutic effect of repetitive transcranial magnetic stimulation on motor function in Parkinson's disease patients.  Eur J Neurol. 2003;  10 567-572
  • 96 Peyron R, Laurent B, Garcia-Larrea L. Functional imaging of brain responses to pain. A review and meta-analysis (2000).  Neurophysiol Clin. 2000;  30 263-288
  • 97 Price D D. Psychological and neural mechanisms of the affective dimension of pain.  Science. 2000;  288 1769-1772
  • 98 Ploner M, Gross J, Timmermann L, Schnitzler A. Cortical representation of first and second pain sensation in humans.  Proc Natl Acad Sci U S A. 2002;  99 12444-12448
  • 99 Ploghaus A, Becerra L, Borras C, Borsook D. Neural circuitry underlying pain modulation: expectation, hypnosis, placebo.  Trends Cogn Sci. 2003;  7 197-200
  • 100 Valet M, Sprenger T, Boecker H, Willoch F, Rummeny E, Conrad B, Erhard P, Tolle T R. Distraction modulates connectivity of the cingulo-frontal cortex and the midbrain during pain - an fMRI analysis.  Pain. 2004;  109 399-408
  • 101 Rainville P, Carrier B, Hofbauer R K, Bushnell M C, Duncan G H. Dissociation of sensory and affective dimensions of pain using hypnotic modulation.  Pain. 1999;  82 159-171
  • 102 Hutchison W D, Davis K D, Lozano A M, Tasker R R, Dostrovsky J O. Pain-related neurons in the human cingulate cortex.  Nat Neurosci. 1999;  2 403-405
  • 103 Koski L, Paus T. Functional connectivity of the anterior cingulate cortex within the human frontal lobe: a brain-mapping meta-analysis.  Exp Brain Res. 2000;  133 55-65
  • 104 Peyron R, Garcia-Larrea L, Deiber M P, Cinotti L, Convers P, Sindou M, Mauguiere F, Laurent B. Electrical stimulation of precentral cortical area in the treatment of central pain: electrophysiological and PET study.  Pain. 1995;  62 275-286
  • 105 Kakigi R, Inui K, Tamura Y. Electrophysiological studies on human pain perception.  Clin Neurophysiol. 2005;  116 743-763
  • 106 Tamura Y, Okabe S, Ohnishi T, Saito D N, Arai N, Mochio S, Inoue K, Ugawa Y. Effects of 1-Hz repetitive transcranial magnetic stimulation on acute pain induced by capsaicin.  Pain. 2004;  107 107-115
  • 107 Tamura Y, Hoshiyama M, Inui K, Nakata H, Qiu Y, Ugawa Y, Inoue K, Kakigi R. Facilitation of A[delta]-fiber-mediated acute pain by repetitive transcranial magnetic stimulation.  Neurology. 2004;  62 2176-2181
  • 108 Summers J, Johnson S, Pridmore S, Oberoi G. Changes to cold detection and pain thresholds following low and high frequency transcranial magnetic stimulation of the motor cortex.  Neurosci Lett. 2004;  368 197-200
  • 109 Graff-Guerrero A, Gonzalez-Olvera J, Fresan A, Gomez-Martin D, Carlos Mendez-Nunez J, Pellicer F. Repetitive transcranial magnetic stimulation of dorsolateral prefrontal cortex increases tolerance to human experimental pain.  Brain Res Cogn Brain Res. 2005;  25 153-160
  • 110 Lefaucheur J P, Drouot X, Keravel Y, Nguyen J P. Pain relief induced by repetitive transcranial magnetic stimulation of precentral cortex.  Neuroreport. 2001;  12 2963-2965
  • 111 Lefaucheur J P, Drouot X, Nguyen J P. Interventional neurophysiology for pain control: duration of pain relief following repetitive transcranial magnetic stimulation of the motor cortex.  Neurophysiol Clin. 2001;  31 247-252
  • 112 Rollnik J D, Wustefeld S, Dauper J, Karst M, Fink M, Kossev A, Dengler R. Repetitive transcranial magnetic stimulation for the treatment of chronic pain - a pilot study.  Eur Neurol. 2002;  48 6-10
  • 113 Pleger B, Janssen F, Schwenkreis P, Volker B, Maier C, Tegenthoff M. Repetitive transcranial magnetic stimulation of the motor cortex attenuates pain perception in complex regional pain syndrome type I.  Neurosci Lett. 2004;  356 87-90
  • 114 Canavero S, Bonicalzi V, Dotta M, Vighetti S, Asteggiano G, Cocito D. Transcranial magnetic cortical stimulation relieves central pain.  Stereotact Funct Neurosurg. 2002;  78 192-196
  • 115 Lefaucheur J P. Transcranial magnetic stimulation in the management of pain.  Suppl Clin Neurophysiol. 2004;  57 737-748
  • 116 Lefaucheur J P, Drouot X, Menard-Lefaucheur I, Zerah F, Bendib B, Cesaro P, Keravel Y, Nguyen J P. Neurogenic pain relief by repetitive transcranial magnetic cortical stimulation depends on the origin and the site of pain.  J Neurol Neurosurg Psychiatry. 2004;  75 612-616
  • 117 Khedr E M, Kotb H, Kamel N F, Ahmed M A, Sadek R, Rothwell J C. Longlasting antalgic effects of daily sessions of repetitive transcranial magnetic stimulation in central and peripheral neuropathic pain.  J Neurol Neurosurg Psychiatry. 2005;  76 833-838
  • 118 Lefaucheur J P, Drouot X, Menard-Lefaucheur I, Nguyen J P. Neuropathic pain controlled for more than a year by monthly sessions of repetitive transcranial magnetic stimulation of the motor cortex.  Neurophysiol Clin. 2004;  34 91-95
  • 119 Brighina F, Piazza A, Vitello G, Aloisio A, Palermo A, Daniele O, Fierro B. rTMS of the prefrontal cortex in the treatment of chronic migraine: a pilot study.  J Neurol Sci. 2004;  227 67-71
  • 120 Heller A J. Classification and epidemiology of tinnitus.  Otolaryngol Clin North Am. 2003;  36 239-248
  • 121 Dobie R A. Depression and tinnitus.  Otolaryngol Clin North Am. 2003;  36 383-388
  • 122 Eggermont J J, Roberts L E. The neuroscience of tinnitus.  Trends Neurosci. 2004;  27 676-682
  • 123 Melcher J R, Sigalovsky I S, Guinan Jr J J, Levine R A. Lateralized tinnitus studied with functional magnetic resonance imaging: abnormal inferior colliculus activation.  J Neurophysiol. 2000;  83 1058-1072
  • 124 Giraud A L, Chery-Croze S, Fischer G, Fischer C, Vighetto A, Gregoire M C, Lavenne F, Collet L. A selective imaging of tinnitus.  Neuroreport. 1999;  10 1-5
  • 125 Lockwood A H, Wack D S, Burkard R F, Coad M L, Reyes S A, Arnold S A, Salvi R J. The functional anatomy of gaze-evoked tinnitus and sustained lateral gaze.  Neurology. 2001;  56 472-480
  • 126 Langguth B, Eichhammer P, Zowe M, Kleinjung T, Jacob P, Binder H, Sand P, Hajak G. Altered motor cortex excitability in tinnitus patients: a hint at crossmodal plasticity.  Neurosci Lett. 2005;  380 326-329
  • 127 Mulheran M. The effects of quinine on cochlear nerve fibre activity in the guinea pig.  Hear Res. 1999;  134 145-152
  • 128 Kiang N Y, Moxon E C, Levine R A. Auditory-nerve activity in cats with normal and abnormal cochleas.  In: Sensorineural hearing loss. Ciba Found Symp 1970: 241-273
  • 129 Jastreboff P J, Sasaki C T. Salicylate-induced changes in spontaneous activity of single units in the inferior colliculus of the guinea pig.  J Acoust Soc Am. 1986;  80 1384-1391
  • 130 Eggermont J J, Kenmochi M. Salicylate and quinine selectively increase spontaneous firing rates in secondary auditory cortex.  Hear Res. 1998;  117 149-160
  • 131 Norena A J, Eggermont J J. Changes in spontaneous neural activity immediately after an acoustic trauma: implications for neural correlates of tinnitus.  Hear Res. 2003;  183 137-153
  • 132 Plewnia C, Bartels M, Gerloff C. Transient suppression of tinnitus by transcranial magnetic stimulation.  Ann Neurol. 2003;  53 263-266
  • 133 Kleinjung T, Eichhammer P, Langguth B, Jacob P, Marienhagen J, Hajak G, Wolf S R, Strutz J. Long-term effects of repetitive transcranial magnetic stimulation (rTMS) in patients with chronic tinnitus.  Otolaryngol Head Neck Surg. 2005;  132 566-569
  • 134 Langguth B, Eichhammer P, Wiegand R, Marienhegen J, Maenner P, Jacob P, Hajak G. Neuronavigated rTMS in a patient with chronic tinnitus. Effects of 4 weeks treatment.  Neuroreport. 2003;  14 977-980
  • 135 Hoffman R E, Boutros N N, Hu S, Berman R M, Krystal J H, Charney D S. Transcranial magnetic stimulation and auditory hallucinations in schizophrenia.  Lancet. 2000;  355 1073-1075
  • 136 Ji R R, Schlaepfer T E, Aizenman C D, Epstein C M, Qiu D, Huang J C, Rupp F. Repetitive transcranial magnetic stimulation activates specific regions in rat brain.  Proc Natl Acad Sci U S A. 1998;  95 15635-15640
  • 137 Muller M B, Toschi N, Kresse A E, Post A, Keck M E. Long-term repetitive transcranial magnetic stimulation increases the expression of brain-derived neurotrophic factor and cholecystokinin mRNA, but not neuropeptide tyrosine mRNA in specific areas of rat brain.  Neuropsychopharmacology. 2000;  23 205-215
  • 138 Keck M E, Welt T, Muller M B, Erhardt A, Ohl F, Toschi N, Holsboer F, Sillaber I. Repetitive transcranial magnetic stimulation increases the release of dopamine in the mesolimbic and mesostriatal system.  Neuropharmacology. 2002;  43 101-109
  • 139 Valero-Cabre A, Payne B R, Rushmore J, Lomber S G, Pascual-Leone A. Impact of repetitive transcranial magnetic stimulation of the parietal cortex on metabolic brain activity: a 14C-2DG tracing study in the cat.  Exp Brain Res. 2005;  163 1-12
  • 140 Wang H, Wang X, Scheich H. LTD and LTP induced by transcranial magnetic stimulation in auditory cortex.  Neuroreport. 1996;  7 521-525
  • 141 Stefan K, Kunesch E, Cohen L G, Benecke R, Classen J. Induction of plasticity in the human motor cortex by paired associative stimulation.  Brain. 2000;  123 572-584
  • 142 Classen J, Wolters A, Stefan K, Wycislo M, Sandbrink F, Schmidt A, Kunesch E. Paired associative stimulation.  Suppl Clin Neurophysiol. 2004;  57 563-569
  • 143 Ghabra M B, Hallett M, Wassermann E M. Simultaneous repetitive transcranial magnetic stimulation does not speed fine movement in PD.  Neurology. 1999;  52 768-770
  • 144 Sommer M, Tergau F, Paulus W. TMS in hypokinetic movement disorders. In: George M, Belmaker RH (eds) Transcranial Magnetic Stimulation in Neuropsychiatry. Washington DC; American Psychiatric Press 2000: 163-172
  • 145 Bornke C, Schulte T, Przuntek H, Muller T. Clinical effects of repetitive transcranial magnetic stimulation versus acute levodopa challenge in Parkinson's disease.  J Neural Transm Suppl. 2004;  68 61-67
  • 146 Dragasevic N, Potrebic A, Damjanovic A, Stefanova A, Kostic V S. Therapeutic efficacy of bilateral prefrontal slow repetitive transcranial magnetic stimulation in depressed patients with Parkinson's disease: an open study.  Mov Disord. 2002;  17 528-532
  • 147 Ikeguchi M, Touge T, Nishiyama Y, Takeuchi H, Kuriyama S, Ohkawa M. Effects of successive repetitive transcranial magnetic stimulation on motor performances and brain perfusion in idiopathic Parkinson's disease.  J Neurol Sci. 2003;  209 41-46

Prof. Dr. med. Hartwig Roman Siebner

Christian-Albrechts-Universität zu Kiel

Schittenhelmstraße 10

24105 Kiel

Email: h.siebner@neurologie.uni-kiel.de

    >