Planta Med 2006; 72(2): 156-161
DOI: 10.1055/s-2005-873198
Original Paper
Physiology and in vitro Biotechnology
© Georg Thieme Verlag KG Stuttgart · New York

Microbial Transformation of Glycyrrhetinic Acid by Mucor polymorphosporus

Xiulan Xin1 , 2 , Yufeng Liu1 , Min Ye1 , Hongzhu Guo1 , Dean Guo1
  • 1The State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, P. R. China
  • 2Biotechnology Application Center, Beijing Vocational College of Electronic Science and Technology, Beijing, P. R. China
Further Information

Publication History

Received: May 19, 2005

Accepted: June 24, 2005

Publication Date:
05 January 2006 (online)

Abstract

Glycyrrhetinic acid (GA; 1) is one of the major constituents of a traditional Chinese medicine, the roots of Glycyrrhiza uralensis, called Gancao in Chinese. In the present paper, the biotransformation of GA by Mucor polymorphosporus (AS 3.3443) was investigated and eight metabolites were obtained. Based on their chemical and spectral data, the structures of the derivatives were respectively elucidated as 24-hydroxyglycyrrhetinic acid (2), 6β-hydroxyglycyrrhetinic acid (3), 7α-hydroxyglycyrrhetinic acid (4), 7β-hydroxyglycyrrhetinic acid (5), 3-O-acetyl-7β-hydroxyglycyrrhetinic acid (6), 3-oxo-7β-hydroxyglycyrrhetinic acid (7), 15α-hydroxyglycyrrhetinic acid (8), 3-oxo-15α-hydroxyglycyrrhetinic acid (9), among which metabolites 3, 4, 6, 7 and 9 are new compounds.

Abbreviations

GA:glycyrrhetinic acid

TFA:trifluoroacetic acid

RP-HPLC:reversed-phase HPLC

References

  • 1 Goldberg G S, Moreno A P, Bechberger J F, Hearn S S, Shivers R R, Macphee D J. et al . Evidence that disruption of connexon particle arrangements in gap junction plaques is associated with inhibition of gap junctional communication by a glycyrrhetinic acid derivative.  Exp Cell. Res1996;  222 48-53
  • 2 Salvi M, Fiore C, Armanini D, Toninello A. Glycyrrhetinic acid-induced permeability transition in rat liver mitochondria.  Biochem Pharmacol. 2003;  66 2375-9
  • 3 Salari M H, Eshraghi S, Noroozi M. Antibacterial effect of glycyrrhetinic acid on 55 hospital strains of Staphylococcus aureus and 32 Actinobacillus actinomycetemcomitans .  J Faculty Pharm, Tehran University of Medical Sciences. 2001;  9 37-9
  • 4 Lin Z J, Qiu S X, Wufuer A, Shum L. Simultaneous determination of glycyrrhizin, a marker component in radix Glycyrrhizae, and its major metabolite glycyrrhetic acid in human plasma by LC-MS/MS.  J Chromatogr B Biomed Appl. 2005;  814 201-7
  • 5 Srisilam K, Veeresham C. Biotransformation of drugs by microbial cultures for predicting mammalian drug metabolism.  Biotechnol Adv. 2003;  21 3-39
  • 6 Zhan J X, Zhang Y X, Guo H Z, Han J, Ning L L, Guo D A. Microbial metabolism of artemisinin by Mucor polymorphosporus and Aspergillus niger .  J Nat Prod. 2002;  65 1693-5
  • 7 Canonica L, Jommi G, Pagnoni U M, Pelizzoni F, Ranzi B M, Scolastico C. Microbiological oxidation of triterpenoids. I. 7β-Hydroxyglycyrrhetic acid.  Gazz Chim Ital. 1966;  96 820-31
  • 8 Canonica L, Ferrari M, Jommi G, Pagnoni U M, Pelizzoni F, Ranzi B M. et al . Microbiological oxidation of triterpenoids. II. 15α-Hydroxyglycyrrhetic and 7β,15α-hydroxyglycyrrhetic acids.  Gazz Chim Ital. 1967;  97 1032-51
  • 9 Akao T, Aoyama M, Akao T, Hattori M, Imai Y, Namba T. et al . Metabolism of glycyrrhetic acid by rat liver microsomes. II. 22α-and 24-hydroxylation.  Biochem Pharmacol. 1990;  40 291-6
  • 10 Komoda Y. Nuclear magnetic resonance spectra of 18β-glycyrrhetinic acid and its related compounds.  Iyo Kizai Kenkyusho Hokoku (Tokyo Ika Shika Daigaku). 1984;  18 39-44
  • 11 Abourashed E A, Clark A M, Hufford C D. Microbial models of mammalian metabolism of xenobiotics: an updated review.  Curr Med Chem. 1999;  6 359-74

Prof. Dean Guo

The State Key Laboratory of Natural and Biomimetic Drugs

School of Pharmaceutical Sciences

Peking University

Xueyuan Road 38

Beijing 100083

People’s Republic of China

Fax: +86-10-8280-2700

Email: gda@bjmu.edu.cn

    >