RSS-Feed abonnieren
DOI: 10.1055/s-2005-873181
© Georg Thieme Verlag KG Stuttgart · New York
Xanthine Oxidase Inhibitors from the Flowers of Chrysanthemum sinense
Publikationsverlauf
Received: March 21, 2005
Accepted: June 10, 2005
Publikationsdatum:
10. November 2005 (online)
Abstract
From the MeOH extract of the flowers of Chrysanthemum sinense, a new flavone glucoside, acacetin 7-O-(3-O-acetyl-β-D-glucopyranoside) (1), has been isolated together with 27 known compounds including flavonoids, caffeoylquinic acid derivatives, phenolics, and a monoterpenoid glucoside. Their structures were elucidated on the basis of spectroscopic data. Compounds 1 - 15, 20 - 24, and 27 displayed significant xanthine oxidase inhibitory activity in a concentration-dependent manner, and compounds 2 - 11 and 22 showed more potent inhibitory activity, with IC50 values ranging from 0.13 to 2.31 μM, than that of a positive control allopurinol (IC50 = 2.50 μM). The kinetic study indicated that 1 - 15 and 20 - 24 displayed competitive-type inhibition like that of allopurinol, while 27 displayed a mixed-type inhibition.
Key words
Chrysanthemum sinense - Asteraceae - acacetin 7-O-(3-O-acetyl-β-D-glucopyranoside) - flavonoids - caffeoylquinic acid - phenolics - Xanthine oxidase inhibition
References
- 1 Oettl K, Reibnegger G. Pteridines as inhibitors of xanthine oxidase: structural requirements. Biochim Biophys Acta. 1999; 1430 387-95
- 2 Ishibuchi S, Morimoto H, Oe T, Ikebe T, Inoue H, Fukunari A. et al . Synthesis and structure-activity relationships of 1-phenylpyrazoles as xanthine oxidase inhibitors. Bioorg Med Chem Lett. 2001; 11 879-82
- 3 Cos P, Ying L, Calomme M, Hu J P, Cimanga K, Van Poel B. et al . Structure-activity relationship and classification of flavonoids as inhibitors of xanthine oxidase and superoxide scavengers. J Nat Prod. 1998; 61 71-6
- 4 Do T L. Vietnamese Medicinal Plants. Hanoi; Medicine Publisher 2001: p 604
- 5 Nguyen M TT, Awale S, Tezuka Y, Tran L Q, Watanabe H, Kadota S. Xanthine oxidase inhibitory activity of Vietnamese medicinal plants. Biol Pharm Bull. 2004; 27 1414-21
- 6 Harborne J B, Mabry T J. The flavonoids: advances in research, 1st Edition. Cambridge; Cambridge University Press 1982: pp 52-130
- 7 Wollenweber E, Vetschera K M, Ivancheva S, Kuzmanov B. Flavonoid aglycones from the leaf surfaces of some Achillea species. Phytochemistry. 1987; 26 181-2
- 8 Marco J A, Barbera O, Rodriguez S, Domingo C, Adell J. Flavonoids and other phenolics from Artemisia hispanica . Phytochemistry. 1988; 27 3155-9
- 9 Martinez-Vazquez M, Garcia H MV, Toscano R A, Perez G E. Methylated flavones from Conoclidium greggii . J Nat Prod. 1993; 56 1410-3
- 10 Mues R, Timmermann B N, Ohno N, Mabry T J. 6-Methoxyflavonoids from Brickellia californica . Phytochemistry. 1979; 18 1379-83
- 11 Sanchez A R, Vazquez P. Quinic acid ester from Isertia haenkeana . Phytochemistry. 1991; 30 311-3
- 12 Pauli G , Poetsch F, Nahrstedt A. Structure assignment of natural quinic acid derivatives using proton nuclear magnetic resonance techniques. Phytochem Anal. 1998; 9 177-85
- 13 Saleh N AM, Elnegoumy S I, Abouzaid M M. Flavonoids of Artemisia judaica, A. monosperma and A. herba-alba . Phytochemistry. 1987; 26 3059-64
- 14 Gongora L, Giner R M, Manez S, Recio M C, Rios J L. Phagnalon rupestre as a source of compounds active on contact hypersensitivity. Planta Med. 2002; 68 561-4
- 15 Basnet P, Matsushige K, Hase K, Kadota S, Namba T. Four di-O-caffeoyl quinic acid derivatives from propolis. Potent hepatoprotective activity in experimental liver injury model. Biol Pharm Bull. 1996; 19 1479-84
- 16 Guz N R, Stermitz F R. Synthesis and structures of regioisomeric hydnocarpin-type flavonolignans. J Nat Prod. 2000; 63 1140-5
- 17 Pauli G F, Kuczkowiak U, Nahrstedt A. Solvent effects in the structure dereplication of caffeoyl quinic acids. Magn Reson Chem. 1999; 37 827-36
- 18 Silva F AM, Borges F, Guimaraes C, Lima J LMC, Matos C, Reis S. Phenolic acids and derivatives: studies on the relationship among structure, radical scavenging activity, and physicochemical parameters. J Agric Food Chem. 2000; 48 2122-6
- 19 Mpondo E M, Garcia J, Chulia A J, Mariotte A M. A new C13 glycoside from Gentiana pneumonanthe . Planta Med. 1989; 55 492
- 20 Hara S, Okabe H, Mihashi K. Gas-liquid chromatography separation of aldose enantiomers as trimethylsilyl ethers of methyl 2-(polyhydroxyalkyl)-thiazolidine-4(R)-carboxylates. Chem Pharm Bull. 1987; 35 501-6
- 21 Noro T, Oda Y, Miyase T, Ueno A, Fukushima S. Inhibitors of xanthine oxidase from the flowers and buds of Daphne genkwa . Chem Pharm Bull. 1983; 31 3984-7
- 22 Borges F, Fernandes E, Roleira F. Progress towards the discovery of xanthine oxidase inhibitors. Curr Med Chem. 2002; 9 195-217
Prof. Dr. Shigetoshi Kadota
Institute of Natural Medicine
Toyama Medical and Pharmaceutical University
2630 Sugitani
Toyama 930-0194
Japan
Telefon: +81-76-434-7625
Fax: +81-76-434-5059
eMail: kadota@ms.toyama-mpu.ac.jp