Handchir Mikrochir Plast Chir 2005; 37(6): 408-414
DOI: 10.1055/s-2005-872991
Originalarbeit

Georg Thieme Verlag KG Stuttgart · New York

Möglichkeiten und Grenzen der Mikrogefäßdarstellung

Microvessel Visualisation: Applications and LimitationsT. Wolloscheck1 , D. Ravnic2 , M. A. Konerding1
  • 1Institut für Anatomie und Zellbiologie, Johannes-Gutenberg-Universität Mainz
  • 2Laboratory of Immunophysiology, Department of Surgery, Brigham and Women's Hospital, Harvard Surgical Research Laboratories, Harvard Medical School, Boston, USA
Further Information

Publication History

Eingang des Manuskriptes: 19.10.2005

Angenommen: 24.10.2005

Publication Date:
02 January 2006 (online)

Zusammenfassung

Für Untersuchungen des Gefäßsystems und der terminalen Strombahn steht eine Reihe komplementärer morphologischer Untersuchungsverfahren zur Verfügung, die zu einer verbesserten Struktur-Funktions-Analyse eingesetzt werden. Zweidimensionale licht- und elektronenoptische Schnittverfahren mit oder ohne spezifische Markierungen werden durch dreidimensionale Visualisierungsmöglichkeiten der Vaskularisation und der Perfusion ergänzt. Noch dominieren die statischen, Ex-vivo-Untersuchungsmethoden, die Zukunft wird jedoch von intravitalen Methoden bestimmt werden.

Abstract

Vessel systems and the microvascular unit may be studied by a variety of morphological techniques which enable improved structure-function analyses. Two-dimensional light and electron microscopic sectioning techniques with and without specific markers are complemented by 3D vascularisation and perfusion study techniques. Static ex vivo modalities still prevail, however, the future will be dominated by intravital high-resolution techniques.

Literatur

  • 1 Denekamp J. Endothelial cell proliferation as a novel approach to targeting tumour therapy.  Br J Cancer. 1982;  45 136-139
  • 2 Denekamp J. Vascular endothelium as the vulnerable element in tumors.  Acta Radiol Oncol. 1984;  23 217-225
  • 3 di Tomaso E, Capen D, Haskell A, Hart J, Logie J J, Jain R K, McDonald D M, Jones R, Munn L L. Mosaic tumor vessels: cellular basis and ultrastructure of focal regions lacking endothelial cell markers.  Cancer Res. 2005;  65 5740-5749
  • 4 Dorfman D M, Wilson D B, Bruns G A, Orkin S H. Human transcription factor GATA‐2. Evidence for regulation of preproendothelin-1 gene expression in endothelial cells.  J Biol Chem. 1992;  267 1279-1285
  • 5 Folberg R, Maniotis A J. Vasculogenic mimicry.  APMIS. 2004;  112 508-525
  • 6 Folkman J. Anti-angiogenesis: A new concept for therapy of solid tumors.  Ann Surg. 1972;  175 409-416
  • 7 Hammersen F. Bau und Funktion der Blutkapillaren. Meesen H Mikrozirkulation. Handbuch der allgemeinen Pathologie. 3. Band, 7. Teil. Berlin, Heidelberg, New York; Springer Verlag 1977: 135-229
  • 8 Hammersen F, Endrich B, Messmer K. The fine structure of tumor blood vessels. I. Participation of non-endothelial cells in tumor angiogenesis.  Int J Microcirc Clin Exp. 1985;  4 31-43
  • 9 Konerding M A. Ocular angiogenesis: translating preclinical indications to successful clinical development.  Expert Opin Ther Targets. 2004;  8 255-258
  • 10 Konerding M A, Steinberg F, Budach V. The vascular system of xenotransplanted tumors - Scanning electron and light microscopic studies.  Scanning Microsc. 1989;  3 327-335
  • 11 Konerding M A. Scanning electron microscopy of corrosion casting in medicine.  Scanning Microsc. 1991;  5 851-865
  • 12 Konerding M A, Miodonski A J, Lametschwandtner A. Microvascular corrosion casting in the study of tumor vascularity: A review.  Scanning Microsc. 1995;  9 1233-1243
  • 13 Li C, Gardy R, Seon B K, Duff S E, Abdalla S, Renehan A, O'Dwyer S T, Haboubi N, Kumar S. Both high intratumoral microvessel density determined using CD105 antibody and elevated plasma levels of CD105 in colorectal cancer patients correlate with poor prognosis.  Br J Cancer. 2003;  88 1424-1431
  • 14 Malkusch W, Konerding M A, Klapthor B, Bruch J. A simple and accurate method for 3-D measurements in microcorrosion casts illustrated with tumour vascularization.  Anal Cell Pathol. 1995;  9 69-81
  • 15 McDonald D M, Choyke P L. Imaging of angiogenesis: From microscope to clinic.  Nat Med. 2003;  9 713-725
  • 16 Minnich B, Lametschwandtner A. Length measurements in microvascular corrosion castings: Two-dimensional versus three-dimensional morphometry.  Scanning. 2000;  22 73-177
  • 17 Ravnic D J, Jiang X, Wolloscheck T, Pratt J P, Huss H, Mentzer S J, Konerding M A. Vessel painting of the microcirculation using fluorescent lipophilic tracers.  Microvasc Res. 2005;  70 90-96
  • 18 Springer M L, Ip T K, Blau H M. Angiogenesis monitored by perfusion with a space-filling microbead suspension.  Mol Ther. 2000;  1 82-87
  • 19 Su M, West C A, Young A J, He C, Konerding M A, Mentzer S J. Dynamic deformation of migratory efferent lymph-derived cells “trapped” in the inflammatory microcirculation.  J Cell Physiol. 2003;  194 54-62
  • 20 Weidner N, Semple J P, Welch W R, Folkman J. Tumor angiogenesis and metastasis-correlation in invasive breast carcinoma.  N Engl J Med. 1991;  324 1-8
  • 21 Weidner N, Folkman J, Pozza F, Bevilacqua P, Allred E N, Moore D H, Meli S, Gasparini G. Tumor angiogenesis: A new significant and independent prognostic indicator in early-stage breast carcinoma.  J Natl Cancer Inst. 1992;  84 1875-1887
  • 22 Weidner N, Carroll P R, Flax J, Blumenfeld W, Folkman J. Tumor angiogenesis correlates with metastasis in invasive prostate carcinoma.  Am J Pathol. 1993;  143 401-409
  • 23 Weidner N. Current pathologic methods for measuring intratumoral microvessel density within breast carcinoma and other solid tumors.  Breast Cancer Res Treat. 1995;  36 169-180

Univ.-Prof. Dr. med. M. A. Konerding

Institut für Anatomie und Zellbiologie
Johannes-Gutenberg-Universität Mainz

Saarstraße 13 - 18

55099 Mainz

Email: konerdin@uni-mainz.de

    >