Int J Sports Med 2006; 27(10): 780-785
DOI: 10.1055/s-2005-872968
Physiology & Biochemistry

© Georg Thieme Verlag KG Stuttgart · New York

Non-Linear Analyses of Heart Rate Variability During Heavy Exercise and Recovery in Cyclists

J.-F. Casties1 , D. Mottet1 , D. Le Gallais2
  • 1Université Montpellier I, EA 2991 Efficience et Déficience Motrices, Montpellier, France
  • 2Université Montpellier I, EA 2992 Dynamique des Incohérences Cardiovasculaires, Montpellier, France
Further Information

Publication History

Accepted after revision: September 20, 2005

Publication Date:
01 February 2006 (online)

Abstract

We investigated the time course of RR interval variability during exercise and subsequent 50 minutes of recovery in seven well-trained male cyclists who performed an exercise with 3 successive 8 min stages at 40 %, 70 % and 90 % of their maximal oxygen uptake. The goal of the study was to check whether the decrease in the amplitude of heart rate variability during heavy exercise was accompanied by changes in the chaotic structure of the fluctuations. Heart rate variability was analysed in the temporal and frequency domain using traditional tools and using non-linear methods (Largest Lyapunov Exponent, Detrended Fluctuation Analysis, Minimum Embedding Dimension). When compared to rest, variability at the heaviest exercise intensity was significantly lower (RR: 0.94 ± 0.22 vs. 0.34 ± 0.01 ms; SDRR: 0.11 ± 0.04 vs. 0.01 ± 0.00 ms) due to a decrease in both LF (2101 ± 1450 vs. 0.14 ± 0.09 ms2 · Hz-1) and HF spectral energy (1148 ± 1126 vs. 7.88 ± 9.24 ms2 · Hz-1). Non-linear analyses showed that heart rate variability remained chaotic whatever the exercise intensity (the largest Lyapunov exponent was positive at 90 % of the maximal oxygen uptake), with a fractal organisation that tended towards white noise (DFA value close to 0.5) during heavy exercise. During recovery, temporal and spectral variables came back to their rest values within about 30 minutes following an exponential pattern. Non-linear analyses revealed that heartbeat dynamics were disorganised at the beginning of recovery, and involved more regulating systems than at rest, even after 50 minutes of recovery. We concluded that, during heavy exercise, heart rate variability was mainly influenced by other factors than autonomous nervous system, and suggest that mechanical or neurological couplings between the cardiac, locomotor and respiratory systems could play an important part in the observed changes.

References

  • 1 Braun C, Kowallik P, Freking A, Hadeler D, Kniffki K D, Meesmann M. Demonstration of nonlinear components in heart rate variability of healthy persons.  Am J Physiol. 1998;  275 H1577-H1584
  • 2 Cao L. Practical method for determining the embedding dimension of a scalar time series.  Physica D. 1997;  110 43-50
  • 3 Costa M, Pimentel I R, Santiago T, Sarreira P, Melo J, Ducla-Soares E. No evidence of chaos in the heart rate variability of normal and cardiac transplant human subjects.  J Cardiovasc Electrophysiol. 1999;  10 1350-1357
  • 4 Cottin F, Medigue C, Lepretre P M, Papelier Y, Koralsztein J P, Billat V. Heart rate variability during exercise performed below and above ventilatory threshold.  Med Sci Sports Exerc. 2004;  36 594-600
  • 5 Cottin F, Papelier Y, Escourrou P. Effects of exercise load and breathing frequency on heart rate and blood pressure variability during dynamic exercise.  Int J Sports Med. 1999;  20 232-238
  • 6 Denton T A, Diamond G A, Helfant R H, Khan S, Karagueuzian H. Fascinating rhythm: a primer on chaos theory and its application to cardiology.  Am Heart J. 1990;  120 1419-1440
  • 7 Hagerman I, Berglund M, Lorin M, Nowak J, Sylven C. Chaos-related deterministic regulation of heart rate variability in time- and frequency domains: effects of autonomic blockade and exercise.  Cardiovasc Res. 1996;  31 410-418
  • 8 Iyengar N, Peng C K, Morin R, Goldberger A L, Lipsitz L A. Age-related alterations in the fractal scaling of cardiac interbeat interval dynamics.  Am J Physiol. 1996;  271 R1078-R1084
  • 9 Javorka M, Zila I, Balharek T, Javorka K. Heart rate recovery after exercise: relations to heart rate variability and complexity.  Braz J Med Biol Res. 2002;  35 991-1000
  • 10 Javorka M, Zila I, Balharek T, Javorka K. On- and off-responses of heart rate to exercise - relations to heart rate variability.  Clin Physiol Funct Imaging. 2003;  23 1-8
  • 11 Macor F, Fagard R, Amery A. Power spectral analysis of RR interval and blood pressure short-term variability at rest and during dynamic exercise: comparison between cyclists and controls.  Int J Sports Med. 1996;  17 175-181
  • 12 Makikallio T H, Hoiber S, Kober L, Torp-Pedersen C, Peng C K, Goldberger A L, Huikuri H V. Fractal analysis of heart rate dynamics as a predictor of mortality in patients with depressed left ventricular function after acute myocardial infarction. TRACE Investigators. TRAndolapril Cardiac Evaluation.  Am J Cardiol. 1999;  83 836-839
  • 13 Malliani A. The Pattern of Sympathovagal Balance Explored in the Frequency Domain.  News Physiol Sci. 1999;  14 111-117
  • 14 Nakamura Y, Yamamoto Y, Muraoka I. Autonomic control of heart rate during physical exercise and fractal dimension of heart rate variability.  J Appl Physiol. 1993;  74 875-881
  • 15 Oida E, Moritani T, Yamori Y. Tone-entropy analysis on cardiac recovery after dynamic exercise.  J Appl Physiol. 1997;  82 1794-1801
  • 16 Peng C K, Havlin S, Stanley H E, Goldberger A L. Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series.  Chaos. 1995;  5 82-87
  • 17 Perini R, Milesi S, Fisher N M, Pendergast D R, Veicsteinas A. Heart rate variability during dynamic exercise in elderly males and females.  Eur J Appl Physiol. 2000;  82 8-15
  • 18 Physick-Sheard P W, Marlin D J, Thornhill R, Schroter R C. Frequency domain analysis of heart rate variability in horses at rest and during exercise.  Equine Vet J. 2000;  32 253-262
  • 19 Radhakrishna R KA, Dutt D N, Yeragani V K. Nonlinear measures of heart rate time series: influence of posture and controlled breathing.  Auton Neurosc. 2000;  83 148-158
  • 20 Rosenstein M T, Collins J J, De luca C. A practical method for calculating Lyapunov exponents from small data sets.  Physica D. 1993;  65 117-134
  • 21 Rosenwinkel E T, Bloomfield D M, Arwady M A, Goldsmith R L. Exercise and autonomic function in health and cardiovascular disease.  Cardiol Clin. 2001;  19 369-387
  • 22 Struzik Z R, Hayano J, Sakata S, Kwak S, Yamamoto Y. 1/f scaling in heart rate requires antagonistic autonomic control.  Phys Rev E Stat Nonlin Soft Matter Phys. 2004;  70 050901
  • 23 TaskForce . Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology.  Circulation. 1996;  93 1043-1065
  • 24 Villard S, Casties J F, Mottet D. Dynamic stability of locomotor respiratory coupling during cycling in humans.  Neurosci Lett. 2005;  383 333-338

Denis Mottet

Faculté des sciences du sport, Université Montpellier I

700 Av du Pic Saint Loup

34090 Montpellier cedex

France

Fax: + 33 4 67 41 57 08

Email: denis.mottet@univ-montp1.fr