Semin Vasc Med 2005; 5(2): 190-200
DOI: 10.1055/s-2005-872404
Copyright © 2005 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001 USA.

Homocysteine and Folic Acid: Implications for Pregnancy

Sean Daly1 , Amanda Cotter2 , Ann E. Molloy3 , John Scott3
  • 1Coombe Women’s Hospital, Dublin, Ireland
  • 2Department of Obstetrics and Gynecology, University of Miami, Miami, Florida
  • 3Department of Biochemistry, Trinity College Dublin, Dublin, Ireland
Further Information

Publication History

Publication Date:
27 July 2005 (online)

ABSTRACT

The role of folic acid and homocysteine in pregnancy is becoming clearer. The efforts of many countries to prevent neural tube defects through public awareness of folic acid have been disappointing, but evidence is now emerging that the food fortification programs in the United States and Canada are effective in reducing the numbers of neural tube defects, and there may be additional benefits in terms of other congenital defects such as oral-facial clefts and congenital heart disease. Homocysteine has a significant association with vascular disease in later life, is elevated in preeclampsia, and has been associated with other pregnancy complications such as early pregnancy loss. The data from cohorts of women with a history of preeclampsia during pregnancy indicate that they are at increased risk for cardiovascular and cerebrovascular disease in later life. Elevated homocysteine concentrations may be a common link that accounts for these associations.

REFERENCES

  • 1 Kelly P, McPartlin J, Goggins M, Weir D G, Scott J M. Unmetabolized folic acid in serum: acute studies in subjects consuming fortified food and supplements.  Am J Clin Nutr. 1997;  65 1790-1795
  • 2 Frosst P, Blom H J, Milos R et al.. A candidate genetic risk factor for vascular disease: A common mutation in methylene-tetrahydrofolate reductase.  Nat Genet. 1995;  10 111-113
  • 3 Jacques P F, Bostom A G, Williams R R et al.. Relation between folate status, a common mutation in methylenetetrahydrofolate reductase, and plasma homocysteine concentrations.  Circulation. 1996;  93 7-9
  • 4 Molloy A M, Daly S, Mills J L et al.. Thermolabile variant of 5,10-methylenetetrahydrofolate reductase associated with low red-cell folates: implications for folate intake recommendations.  Lancet. 1997;  349 1591-1593
  • 5 Weir D G, Scott J M. Homocysteine as a risk factor for cardiovascular and related disease: nutritional implications.  Nutrition Research Reviews. 1998;  11 311-338
  • 6 Boushey C J, Beresford S A, Omenn G S, Motulsky A G. A quantitative assessment of plasma homocysteine as a risk factor for vascular disease.  JAMA. 1995;  274 1049-1057
  • 7 Eikelboom J W, Lonn E, Genest J, Hankey G, Yusuf S. Homocyst(e)ine and cardiovascular disease: a critical review of the epidemiological evidence.  Ann Intern Med. 1999;  131 363-375
  • 8 Ueland P M, Refsum H, Stabler S P, Malinow M R, Anderson A, Allen R H. Total homocysteine in plasma or serum: methods and clinical applications.  Clin Chem. 1993;  39 1764-1779
  • 9 Cotter A M, Daly S F. Neural tube defects: is a decreasing prevalence associated with a decrease in severity?.  Eur J Obstet Gynecol Reprod Biol. 2005;  119 161-163
  • 10 Botto L D, Moore C A, Khoury M J, Erickson J D. Neural-tube defects.  N Engl J Med. 1999;  341 1509-1519
  • 11 MRC Vitamin Study Research Group . Prevention of neural tube defects: results of the Medical Research Council Vitamin Study.  Lancet. 1991;  338 131-137
  • 12 Czeizel A E, Dudas I. Prevention of the first occurrence of neural-tube defects by periconceptional vitamin supplementation.  N Engl J Med. 1992;  327 1832-1835
  • 13 Rothenberg S P, da Costa M P, Sequeira J M et al.. Autoantibodies against folate receptors in women with a pregnancy complicated by a neural-tube defect.  N Engl J Med. 2004;  350 134-142
  • 14 Forrest J D. Epidemiology of unintended pregnancy and contraceptive use.  Am J Obstet Gynecol. 1994;  170 1485-1489
  • 15 Higgins M, Daly S F. Poor compliance with folic acid supplementation recommendations among women in Dublin. Proceedings of the Irish Perinatal Society Spring Meeting 2004
  • 16 United States Food and Drug Administration . Food Standards: amendment of standards of identity for enriched grain products to require addition of folic acid.  Fed Regist. 1996;  61 8781-8797
  • 17 Honein M A, Paulozzi L J, Mathews T J, Erickson J D, Wong L Y. Impact of folic acid fortification of the US food supply on the occurrence of neural tube defects.  JAMA. 2001;  285 2981-2986
  • 18 Persad V L, Van den Hof M C, Dube J M, Zimmer P. Incidence of open neural tube defects in Nova Scotia after folic acid fortification.  CMAJ. 2002;  167 241-245
  • 19 Committee on Medical Aspects of Food and Nutrition Policy (COMA) Report on Health and Social Subjects .50: Folic acid and the prevention of disease. London; The Stationery Office 2000
  • 20 Mills J L, McPartlin J M, Kirke P N et al.. Homocysteine metabolism in pregnancies complicated by neural-tube defects.  Lancet. 1995;  345 149-151
  • 21 Essien F B, Wannberg L S. Methionine but not folic acid or Vitamin B-12 altered the frequency of neural tube defects in axd mutant mice.  J Nutr. 1993;  123 27-34
  • 22 Coelho C N, Weber J A, Klein N W, Daniels W G, Hoagland T A. Whole rat embryos require methionine for neural tube closure when cultured on cow serum.  J Nutr. 1989;  119 1716-1725
  • 23 Saxen I. Associations between oral clefts and drugs taken during pregnancy.  Int J Epidemiol. 1975;  4 37-44
  • 24 Hill L, Murphy M, McDowall M, Paul A H. Maternal drug histories and congenital malformations: limb reduction defects and oral clefts.  J Epidemiol Community Health. 1988;  42 1-7
  • 25 Hayes C, Werler M M, Willett W C, Mitchell A A. Case-control study of periconceptional folic acid supplementation and oral clefts.  Am J Epidemiol. 1996;  143 1229-1234
  • 26 Czeizel A E, Timar L, Sarkozi A. Dose-dependent effect of folic acid on the prevention of orofacial clefts.  Pediatrics. 1999;  104 e66
  • 27 Kallen B. Maternal drug use and infant cleft lip/palate with special reference to corticoids.  Cleft Palate Craniofac J. 2003;  40 624-628
  • 28 Shaw G M, Lammer E J, Wasserman C R, O'Malley C D, Tolarova M M. Risks of orofacial clefts in children born to women using multivitamins containing folic acid periconceptionally.  Lancet. 1995;  346 393-396
  • 29 Itikala P R, Watkins M L, Mulinare J, Moore C A, Liu Y. Maternal multivitamin use and orofacial clefts in offspring.  Teratology. 2001;  63 79-86
  • 30 Loffredo L C, Souza J M, Freitas J A, Mossey P A. Oral clefts and vitamin supplementation.  Cleft Palate Craniofac J. 2001;  38 76-83
  • 31 Werler M M, Hayes C, Louik C, Shapiro S, Mitchell A A. Multivitamin supplementation and risk of birth defects.  Am J Epidemiol. 1999;  150 675-682
  • 32 Czeizel A E, Toth M, Rockenbauer M. Population-based case control study of folic acid supplementation during pregnancy.  Teratology. 1996;  53 345-351
  • 33 Peer L, Gordon H W, Bernhard W G. Effects of vitamins on human teratology.  Plast Reconstr Surg. 1964;  34 358-361
  • 34 Tolarova M, Harris J. Reduced recurrence of orofacial clefts after periconceptional supplementation with high-dose folic acid and multivitamins.  Teratology. 1995;  51 71-78
  • 35 Ray J G, Meier C, Vermeulen M J, Wyatt P R, Cole D E. Association between folic acid food fortification and congenital orofacial clefts.  J Pediatr. 2003;  143 805-807
  • 36 van Rooij I A, Swinkels D W, Blom H J, Merkus H M, Steegers-Theunissen R P. Vitamin and homocysteine status of mothers and infants and the risk of nonsyndromic orofacial clefts.  Am J Obstet Gynecol. 2003;  189 1155-1160
  • 37 Shaw G M, Rozen R, Finnell R H, Todoroff K, Lammer E J. Infant C677T mutation in MTHFR, maternal periconceptional vitamin use, and cleft lip.  Am J Med Genet. 1998;  80 196-198
  • 38 Shaw G M, Todoroff K, Finnell R H, Rozen R, Lammer E J. Maternal vitamin use, infant C677T mutation in MTHFR, and isolated cleft palate risk.  Am J Med Genet. 1999;  85 84-85
  • 39 Mills J L, Kirke P N, Molloy A M et al.. Methylenetetrahydrofolate reductase thermolabile variant and oral clefts.  Am J Med Genet. 1999;  86 71-74
  • 40 Jugessur A, Wilcox A J, Lie R T et al.. Exploring the effects of methylenetetrahydrofolate reductase gene variants C677T and A1298C on the risk of orofacial clefts in 261 Norwegian case-parent triads.  Am J Epidemiol. 2003;  157 1083-1091
  • 41 Martinelli M, Scapoli L, Pezzetti F et al.. C677T variant form at the MTHFR gene and CL/P: a risk factor for mothers?.  Am J Med Genet. 2001;  98 357-360
  • 42 Prescott N J, Winter R M, Malcolm S. Maternal MTHFR genotype contributes to the risk of non-syndromic cleft lip and palate.  J Med Genet. 2002;  39 368-369
  • 43 Jugessur A, Lie R T, Wilcox A J et al.. Cleft palate, transforming growth factor alpha gene variants, and maternal exposures: assessing gene-environment interactions in case-parent triads.  Genet Epidemiol. 2003;  25 367-374
  • 44 Little J, Cardy A, Munger R G. Tobacco smoking and oral clefts: a meta-analysis.  Bull World Health Organ. 2004;  82 213-218
  • 45 Shaw G M, Wasserman C R, O'Malley C D, Nelson V, Jackson R J. Maternal pesticide exposure from multiple sources and selected congenital anomalies.  Epidemiology. 1999;  10 60-66
  • 46 Marazita M L, Mooney M P. Current concepts in the embryology and genetics of cleft lip and cleft palate.  Clin Plast Surg. 2004;  31 125-140
  • 47 Rosenquist T H, Ratashak S A, Selhub J. Homocysteine induces congenital defects of the heart and neural tube: effect of folic acid.  Proc Natl Acad Sci U S A. 1996;  93 15227-15232
  • 48 Burgoon J M, Selhub J, Nadeau M, Sadler T W. Investigation of the effects of folate deficiency on embryonic development through the establishment of a folate deficient mouse model.  Teratology. 2002;  65 219-227
  • 49 Junker R, Kotthoff S, Vielhaber H et al.. Infant methylenetetrahydrofolate reductase 677TT genotype is a risk factor for congenital heart disease.  Cardiovasc Res. 2001;  51 251-254
  • 50 Wenstrom K D, Johanning G L, Johnston K E, DuBard M. Association of the C677T methylenetetrahydrofolate reductase mutation and elevated homocysteine levels with congenital cardiac malformations.  Am J Obstet Gynecol. 2001;  184 806-812
  • 51 Shaw G M, Zhu H, Lammer E J, Yang W, Finnell R H. Genetic variation of infant reduced folate carrier (A80G) and risk of orofacial and conotruncal heart defects.  Am J Epidemiol. 2003;  158 747-752
  • 52 Storti S, Vittorini S, Lascone M R et al.. Association between 5,10-methylenetetrahydrofolate reductase C677T and A1298C polymorphisms and conotruncal heart defects.  Clin Chem Lab Med. 2003;  41 276-280
  • 53 Botto L D, Olney R S, Erickson J D. Vitamin supplements and the risk for congenital anomalies other than neural tube defects.  Am J Med Genet C Semin Med Genet. 2004;  125C(1) 12-21
  • 54 Czeizel A E, Dobo M, Vargha P. Hungarian cohort-controlled trial of periconceptional multivitamin supplementation shows a reduction in certain congenital abnormalities.  Birth Defects Res A Clin Mol Teratol. 2004;  70 853-861
  • 55 Botto L D, Mulinare J, Erickson J D. Occurrence of congenital heart defects in relation to maternal multivitamin use.  Am J Epidemiol. 2000;  151 878-884
  • 56 Botto L D, Khoury M J, Mulinare J, Erickson J D. Periconceptional multivitamin use and the occurrence of conotruncal heart defects: results from a population-based, case-control study.  Pediatrics. 1996;  98 911-917
  • 57 Ness R B, Roberts J M. Heterogenous causes constituting the single syndrome of pre-eclampsia: A hypothesis and its implications.  Am J Obstet Gynecol. 1996;  175 1365-1370
  • 58 Godfrey K M, Barker D J. Fetal nutrition and adult disease.  Am J Clin Nutr. 2000;  71 1344S-1352S
  • 59 Smith G CS, Pell J P, Walsh D. Pregnancy complications and maternal risk of ischaemic heart disease: a retrospective cohort study of 129 290 births.  Lancet. 2001;  357 2002-2006
  • 60 Irgens H U, Reisaeter L, Irgens L M, Lie R T. Long-term mortality of mothers and fathers after preeclampsia: population based cohort study.  BMJ. 2001;  323 1213-1217
  • 61 Funai E F, Friedlander Y, Paltiel O et al.. Long-term mortality after preeclampsia.  Am J Obstet Gynecol. 2002;  187 S54
  • 62 Laivuori H, Kaaja R, Turpeinen U, Viinikka L, Ylikorkala O. Plasma homocysteine levels elevated and inversely related to insulin sensitivity in preeclampsia.  Obstet Gynecol. 1999;  93 489-493
  • 63 Chambers J C, McGregor A, Jean-Marie J, Kooner J S. Acute hyperhomocysteinaemia and endothelial dysfunction.  Lancet. 1998;  351 36-37
  • 64 Dekker G A, de Vries J IP, Doelitzsch P M et al.. Underlying disorders associated with severe early-onset preeclampsia.  Am J Obstet Gynecol. 1995;  173 1042-1048
  • 65 Hubel C A, Snaedal S, Ness R B et al.. Dyslipoproteinaemia in postmenopausal women with a history of eclampsia.  BJOG. 2000;  107 776-784
  • 66 Hankey G J, Eikelboom J W. Homocysteine and vascular disease.  Lancet. 1999;  354 407-413
  • 67 Weir D G, Scott J M. Homocysteine as a risk factor for cardiovascular and related disease: nutritional implications.  Nutrition Research Reviews. 1998;  11 311-338
  • 68 Bellamy M F, McDowell I F. Putative mechanisms for vascular damage by homocysteine.  J Inherit Metab Dis. 1997;  20 307-315
  • 69 Roberts J M, Redman C WG. Preeclampsia: more than pregnancy-induced hypertension.  Lancet. 1993;  341 1447-1451
  • 70 Ashworth J R, Warren A Y, Johnson I R, Baker P N. Plasma from preeclamptic women and functional change in myometrial resistance arteries.  Br J Obstet Gynaecol. 1998;  105 459-461
  • 71 Rajkovic A, Catalano P M, Malinow M R. Elevated homocysteine levels with preeclampsia.  Obstet Gynecol. 1997;  90 168-171
  • 72 Rajkovic A, Mahomed K, Malinow M R, Sorensen T K, Woelk G B, Williams M A. Plasma homocysteine concentrations in eclamptic and preeclamptic African women postpartum.  Obstet Gynecol. 1999;  94 355-360
  • 73 Powers R W, Evans R W, Majors A K et al.. Plasma homocysteine concentration is increased in preeclampsia and is associated with evidence of endothelial activation.  Am J Obstet Gynecol. 1998;  179 1605-1611
  • 74 Murphy M M, Scott J M, McPartlin J M, Fernandez-Ballart J D. The pregnancy related decrease in fasting plasma homocysteine is not explained by folic supplementation, hemodilution or a decrease in albumin in a longitudinal study.  Am J Clin Nutr. 2002;  76 614-619
  • 75 Cotter A M, Molloy A M, Scott J M, Daly S F. Elevated plasma homocysteine in early pregnancy: A risk factor for the development of severe preeclampsia.  Am J Obstet Gynecol. 2001;  185 781-785
  • 76 Cotter A M, Molloy A M, Scott J M, Daly S F. Elevated plasma homocysteine in early pregnancy: A risk factor for the development of nonsevere preeclampsia.  Am J Obstet Gynecol. 2003;  189 391-394
  • 77 Powers R W, Majors A K, Kerchner L J, Conrad K P. Renal handling of homocysteine during normal pregnancy and preeclampsia.  J Soc Gynecol Investig. 2004;  11 45-50
  • 78 Grandone E, Margaglione M, Colaizzo D et al.. Factor V Leiden, C > T MTHFR polymorphism and genetic susceptibility to preeclampsia.  Thromb Haemost. 1997;  77 1052-1054
  • 79 Sohda S, Arinami T, Hamada H, Yamada N, Hamaguchi H, Kubo T. Methylenetetrahydrofolate reductase polymorphism and preeclampsia.  J Med Genet. 1997;  34 525-526
  • 80 Powers R W, Minich L A, Lykins D L, Ness R B, Crombleholme W R, Roberts J M. Methylenetetrahydrofolate reductase polymorphism, folate and susceptibility to preeclampsia.  J Soc Gynecol Investig. 1999;  6 74-79
  • 81 Prasmusinto D, Skrablin S, Hofstaetter C, Fimmers R, van der Ven K. The methylenetetrahydrofolate reductase 677C→T polymorphism and preeclampsia in two populations.  Obstet Gynecol. 2002;  99 1085-1092
  • 82 Powers R W, Dunbar M S, Gallaher M J, Roberts J M. The 677 C-T methylenetetrahydrofolate reductase mutation does not predict increased maternal homocysteine during pregnancy.  Obstet Gynecol. 2003;  101 762-766
  • 83 Vollset S E, Refsum H, Irgens L M et al.. Plasma total homocysteine, pregnancy complications, and adverse pregnancy outcomes: the Hordaland homocysteine study.  Am J Clin Nutr. 2000;  71 962-968
  • 84 Powers R W, Gandley R E, Lykins D L, Roberts J M. Moderate hyperhomocysteinemia decreases endothelial dependent vasorelaxation in pregnant but not non-pregnant mice.  Hypertension. 2004;  44 327-333
  • 85 Goddijn-Wessel T A, Wouters M G, van de Molen E F et al.. Hyperhomocysteinaemia: a risk factor for placental abruption or infarction.  Eur J Obstet Gynecol Reprod Biol. 1996;  66 23-29
  • 86 Steegers-Theunissen R PM, Boers G HJ, Blom H J, Trijbels F JM, Eskes T KAB. Hyperhomocysteinaemia and recurrent spontaneous abortion or abruptio placentae.  Lancet. 1992;  339 1122-1123
  • 87 de Vries J IP, Dekker G A, Huijgens P C, Jakobs C, Blomberg B, van Geijn H P. Hyperhomocysteinaemia and protein S deficiency in complicated pregnancies.  Br J Obstet Gynaecol. 1997;  104 1248-1254
  • 88 Scholl T O, Johnson W G. Folic acid: influence on the outcome of pregnancy.  Am J Clin Nutr. 2000;  71 1295S-1303S
  • 89 de Weerd S, Steegers-Theunissen R P, de Boo T M, Thomas C M, Steegers E A. Maternal periconceptual biochemical and hematological parameters, vitamin profiles and pregnancy oucome.  Eur J Clin Nutr. 2003;  57 1128-1134
  • 90 Hibbard B M. The role of folic acid in pregnancy with particular reference to anaemia, abruption and abortion.  J Obstet Gynaecol Br Commonw. 1964;  71 529-542
  • 91 Mudd S H, Skovby F, Levy H L et al.. The natural history of homocystinuria due to cystathionine β synthase deficiency.  Am J Hum Genet. 1985;  37 1-31
  • 92 Wouters M G, Boers G H, Blom H J et al.. Hyperhomocysteinaemia; a risk factor in women with unexplained recurrent early pregnancy loss.  Fertil Steril. 1993;  60 820-825
  • 93 Nelen W L, Bulten J, Steegers E A, Blom H J, Hanselaar A G, Eskes T K. Maternal homocysteine and chorionic vascularization in recurrent early pregnancy loss.  Hum Reprod. 2000;  15 954-960
  • 94 Nelen W L, Steegers E A, Eskes T K, Blom H J. Genetic risk factor for unexplained recurrent early pregnancy loss.  Lancet. 1997;  350 861
  • 95 Hogge W A, Byrnes A L, Lanasa M C, Surti U. The clinical use of karyotyping spontaneous abortions.  Am J Obstet Gynecol. 2003;  189 397-400
  • 96 Roque H, Paidas M J, Funai E F, Kuczynski E, Lockwood C J. Maternal thrombophilias are not associated with early pregnancy loss.  Thromb Haemost. 2004;  91 290-295
  • 97 Murphy M M, Scott J M, Arija V, Molloy A M, Fernandez-Ballart J D. Maternal homocysteine before conception and throughout pregnancy predicts fetal homocysteine and birth weight.  Clin Chem. 2004;  50 1406-1412
  • 98 Rolschau J, Kristoffersen K, Ulrich M, Grinsted P, Schaumberg E, Foged N. The influence of folic acid supplements on the outcome of pregnancies in the county of Funen in Denmark.  Eur J Obstet Gynecol Reprod Biol. 1999;  87 105-110
  • 99 Infante-Rivard C, Rivard G E, Gauthier R, Theoret Y. Unexpected relationship between plasma homocysteine and intrauterine growth restriction.  Clin Chem. 2003;  49 1476-1482
  • 100 van der Molen E F, Verbruggen B, Novakova I, Eskes T K, Monnens L A, Blom H J. Hyperhomocysteinemia and other thrombotic risk factors in women with placental vasculopathy.  BJOG. 2000;  107 785-791
  • 101 Wang J, Trudinger B J, Duarte N, Wilcken D E, Wang X L. Elevated circulating homocysteine levels in placental vascular disease and associated preeclampsia.  BJOG. 2000;  107 935-938

 Dr.
Sean Daly

Coombe Women's Hospital

Dublin 8, Ireland

    >