Int J Sports Med 2006; 27(5): 419-426
DOI: 10.1055/s-2005-865778
Training & Testing

© Georg Thieme Verlag KG Stuttgart · New York

A Comparison of Pulmonary Oxygen Uptake Kinetics in Middle- and Long-Distance Runners

A. E. Kilding1 , E. M. Winter2 , M. Fysh2
  • 1Auckland University of Technology, Division of Sport and Recreation, Auckland, New Zealand
  • 2The Centre for Sport and Exercise Science, Sheffield Hallam University, Sheffield, United Kingdom
Further Information

Publication History

Accepted after revision: May 10, 2005

Publication Date:
30 August 2005 (online)

Abstract

The purpose of this study was two-fold: 1) to compare the on- and off-transient pulmonary oxygen uptake (V·O2) kinetics, in the moderate-intensity domain, of middle-distance (MD) and long-distance (LD) runners and 2) to determine the relationship between the volume of training and V·O2 kinetics. With institutional ethics approval, 16 competitive male MD (800/1500 m) and 16 competitive male LD runners (5000/10 000 m) participated in the study. Each runner completed a series of tests to assess maximal V·O2 (V·O2max), ventilatory threshold (VT), and both the on- and off-transient primary time constants (τon and τoff, respectively) in response to moderate-intensity treadmill exercise. The results showed that τon was significantly shorter in LD (12.3 ± 0.5 s) than MD runners (16.4 ± 1.0 s, p = 0.002). During recovery from exercise, τoff was shorter in LD than MD runners (τoff, 24.3 ± 0.6 s vs. 26.9 ± 0.8 s, p = 0.017). The volume of training was greater in LD (66.6 ± 3.5 km · wk-1) than MD runners (43.5 ± 3.9 km · wk-1, p < 0.001) and was related to τon in both groups of runner (MD: r = - 0.63, p = 0.009; LD: r = - 0.68, p = 0.004). Collectively, the results show that MD and LD runners can be differentiated on the basis of their on- and off-transient V·O2 kinetics, despite similarities of V·O2max and VT. This is attributable to the greater volume of training performed by LD runners. Further investigations into adaptation(s) to training in muscle in MD and LD runners is required to determine the functional significance of such differences and the response of V·O2 kinetic parameters to different training stimuli.

References

  • 1 Barstow T K, Casaburi R, Wasserman K. O2 uptake kinetics and the O2 deficit as related to exercise intensity and blood lactate.  J Appl Physiol. 1993;  75 755-762
  • 2 Barstow T J, Jones A M, Nguyen P H, Casaburi R. Influence of muscle fiber type and pedal frequency on oxygen uptake kinetics of heavy exercise.  J Appl Physiol. 1996;  81 1642-1650
  • 3 Barstow T J, Jones A M, Nguyen P H, Casaburi R. Influence of muscle fibre type and fitness on the oxygen uptake/power output slope during incremental exercise in humans.  Exp Physiol. 2000;  85 109-116
  • 4 Beaver W L, Lamarra N, Wasserman K. Breath-by-breath measurement of true alveolar gas exchange.  J Appl Physiol. 1981;  51 1662-1675
  • 5 Beaver W L, Wasserman K, Whipp B J. A new method for detecting anaerobic threshold by gas exchange.  J Appl Physiol. 1986;  60 2020-2027
  • 6 Bell C, Paterson D H, Kowalchuk J M, Cunningham D A. Oxygen uptake kinetics of older humans are slowed with age but are unaffected by hyperoxia.  Experimental Physiology. 1999;  84 747-759
  • 7 Burelle Y, Hochachka P W. Endurance training induces muscle-specific changes in mitochondrial function in skinned muscle fibers.  J Appl Physiol. 2002;  92 2429-2438
  • 8 Bird S, Davison R. Physiological testing guidelines (Third edition). UK: Leeds; British Association of Sport and Exercise Sciences 1997
  • 9 Cadefau J, Casademont J, Grau J M, Fernandez J, Balaguer A, Vernet M, Cusso R, Urbano-Marquez A. Biochemical and histochemical adaptation to sprint training in young athletes.  Acta Physiol Scand. 1990;  140 341-351
  • 10 Carter H, Jones A M, Barstow T J, Burnley M, Williams C A, Doust J H. Oxygen uptake kinetics in treadmill running and cycle ergometry: a comparison.  J Appl Physiol. 2000;  89 899-907
  • 11 Carter H, Jones A M, Barstow T J, Burnley M, Williams C, Doust J H. Effect of endurance training on oxygen uptake kinetics during treadmill running.  J Appl Physiol. 2000;  89 1744-1752
  • 12 Carter H, Pringle J SM, Jones A M, Doust J H. Oxygen uptake kinetics during treadmill running across exercise intensity domains.  Eur J Appl Physiol. 2002;  86 347-354
  • 13 Casaburi R, Storer T W, Ben Dov, Wasserman K. Effect of endurance training on possible determinants of V·O2 during heavy exercise.  J Appl Physiol. 1987;  62 199-207
  • 14 Chilibeck P D, Paterson D H, Cunningham D A, Taylor A W, Noble E G. Muscle capillarization O2 diffusion distance, and V·O2 kinetics in old and young individuals.  J Appl Physiol. 1997;  82 63-69
  • 15 Costill D L, Fink W J, Pollock M L. Muscle fiber composition and enzyme activities of elite distance runners.  Med Sci Sports. 1976;  8 96-100
  • 16 Daniels J, Daniels N. Running economy of elite male and elite female runners.  Med Sci Sports Exerc. 1992;  24 483-489
  • 17 Demarle A P, Slawinski J J, Laffite L P, Bocquet V G, Koralsztein J P, Billat V L. Decrease of O2 deficit is a potential factor in increased time to exhaustion after specific endurance training.  J Appl Physiol. 2001;  90 947-953
  • 18 deVries H A, Wiswell R A, Romero G, Moritani T, Bulbulian R. Comparison of oxygen kinetics in young and old subjects.  Eur J Appl Physiol. 1982;  49 277-286
  • 19 Dudley G A, Tullson Terjung P CRL. Influence of mitochondrial content on the sensitivity of respiratory control.  J Biol Chem. 1987;  262 9109-9114
  • 20 Fitts R H, Booth F W, Winder W W, Holloszy J O. Skeletal muscle respiratory capacity, endurance, and glycogen utilization.  Am J Physiol. 1975;  228 1029-1033
  • 21 Fox E L, Bartels R L, Billings C E, Mathews D K, Bason R, Webb W M. Intensity and distance of interval training programs and changes in aerobic power.  Med Sci Sports. 1973;  5 18-22
  • 22 Grassi B, Poole D C, Richardson R S, Knight D R, Erickson B K, Wagner P D. Muscle O2 uptake kinetics in humans: implications for metabolic control.  J Appl Physiol. 1996;  80 988-998
  • 23 Hagberg J M, Hickson R C, Ehsani A A, Holloszy J O. Faster adjustment to and recovery from submaximal exercise in the trained state.  J Appl Physiol. 1980;  48 218-224
  • 24 Harms S J, Hickson R C. Skeletal muscle mitochondria and myoglobin, endurance and intensity of training.  J Appl Physiol. 1983;  54 798-802
  • 25 Hickson R C. Skeletal muscle cytochrome c and myoglobin, endurance, and frequency of training.  J Appl Physiol. 1981;  51 746-749
  • 26 Holloszy J O, Coyle E F. Adaptations of skeletal muscle to endurance exercise and their metabolic consequences.  J Appl Physiol. 1984;  56 831-838
  • 27 Jones A M, Doust J H. A 1 % treadmill grade most accurately reflects the energetic cost of outdoor running.  J Sports Sci. 1996;  14 321-327
  • 28 Lacour J R, Padilla M, Barthelemy J C, Dormois D. The energetics of middle-distance running.  Eur J Appl Physiol. 1990;  60 38-43
  • 29 Lamarra N, Whipp B J, Ward S A, Wasserman K. Effect of interbreath fluctuations on characterizing exercise gas exchange kinetics.  J Appl Physiol. 1987;  62 2003-2012
  • 30 MacDougall J D, Hicks A L, MacDonald J R, McKelvie R S, Green H J, Smith K M. Muscle performance and enzymatic adaptations to sprint interval training.  J Appl Physiol. 1998;  84 2138-2142
  • 31 McCully K K, Vandenborne K, DeMeirleir K, Posner J D, Leigh J SJ. Muscle metabolism in track athletes, using 31 P magnetic resonance spectroscopy.  Can J Physiol Pharmacol. 1992;  70 1353-1359
  • 32 McCully K K, Fielding R A, Evans W J, Leigh J S, Posner J D. Relationships between in vivo and in vitro measurements of metabolism in young and old human calf muscles.  J Appl Physiol. 1993;  75 813-819
  • 33 Meyer R A. A linear model of muscle respiration explains monoexponential phosphocreatine changes.  Am J Physiol. 1988;  254 548-553
  • 34 Nevill A M, Brown D, Godfrey R, Johnson P J, Romer L, Stewart A D, Winter E M. Modelling maximal oxygen uptake of elite endurance athletes.  Med Sci Sports Exerc. 2003;  35 488-494
  • 35 Norris S R, Petersen S R. Effects of endurance training on transient oxygen uptake responses in cyclists.  J Sports Sci. 1998;  16 733-738
  • 36 Özyener F, Rossiter H, Ward S, Whipp B J. Influence of exercise intensity on the on- and off-transient kinetics of pulmonary oxygen uptake in humans.  J Physiol (Lond). 2001;  533 891-902
  • 37 Paganini A T, Foley J M, Meyer R A. Linear dependence of muscle phosphocreatine kinetics on oxidative capacity.  Am J Physiol. 1997;  272 501-510
  • 38 Phillips S M, Green H J, MacDonald M J, Hughson R L. Progressive effect of endurance training on V·O2 kinetics at the onset of submaximal exercise.  J Appl Physiol. 1995;  79 1914-1920
  • 39 Poole D C, Richardson R S. Determinants of oxygen uptake.  Sports Med. 1997;  24 308-320
  • 40 Reilly T. Circadian variation in ventilatory and metabolic adaptations to submaximal exercise.  Br J Sport Med. 1982;  16 115-116
  • 41 Rossiter H B, Ward S A, Doyle V L, Howe F A, Griffiths J R, Whipp B J. Inferences from pulmonary O2 uptake with respect to intramuscular (phosphocreatine) kinetics during moderate exercise in humans.  J Physiol (Lond). 1999;  518 921-932
  • 42 Rossiter H B, Ward S A, Kowalchuk J M, Howe F A, Griffiths J R, Whipp B J. Dynamic asymmetry of phosphocreatine concentration and O2 uptake between the on- and off-transients of moderate- and high-intensity exercise in humans.  J Physiol (Lond). 2002;  54 991-1002
  • 43 Saltin D G, MacDougall J D, Jacobs I, Garner S. The nature of the training response: peripheral and central adaptations to one-legged exercise.  Acta Physiol Scand. 1976;  96 289-305
  • 44 Saltin B, Gollnick P D. Skeletal muscle adaptability: significance for metabolism and performance. Peachey LD Handbook of Physiology (Section 10: Skeletal Muscle). Bethesda, MD; American Physiological Society 1983: 555-631
  • 45 Sjödin B, Thorstensson A, Frith K, Karlsson J. Effect of physical training on LDH activity and LDH isozyme pattern in human skeletal muscle.  Acta Physiol Scand. 1976;  97 150-157
  • 46 Svedenhag J, Sjödin B. Body-mass-modified running economy and step length in elite male middle- and long-distance runners.  Int J Sports Med. 1994;  15 305-310
  • 47 Terjung R L. Muscle fiber involvement during training of different intensities and durations.  Am J Physiol. 1976;  230 946-950
  • 48 Vollestad N K, Blom P C. Effect of varying exercise intensity on glycogen depletion in human muscle fibres.  Acta Physiol Scand. 1985;  125 395-405
  • 49 Wasserman D H, Whipp B J. Coupling of ventilation to pulmonary gas exchange during non steady-state work in men.  J Appl Physiol. 1983;  54 587-593
  • 50 Whipp B J, Mahler M. Dynamics of pulmonary gas exchange during exercise. West JB Pulmonary Gas Exchange: Organism and Environment. New York; Academic Press 1980: 33-98
  • 51 Whipp B J, Ward S A, Lamarra N, Davis J A, Wasserman K. Parameters of ventilatory and gas exchange dynamics during exercise.  J Appl Physiol. 1982;  52 1506-1513
  • 52 Williams C A, Carter H, Jones A M, Doust J H. Oxygen uptake kinetics during treadmill running in boys and men.  J Appl Physiol. 2001;  90 1700-1706
  • 53 Yoshida T, Watari H. Metabolic consequences of repeated exercise in long distance runners.  Eur J Appl Physiol. 1993;  67 261-265

A. E. Kilding

Auckland University of Technology, Division of Sport and Recreation

Private Bag 92006

Auckland, 1020

New Zealand

Phone: + 6499179999

Fax: + 64 99 17 99 60

Email: andrew.kilding@aut.ac.nz

    >