Int J Sports Med 2006; 27(5): 407-414
DOI: 10.1055/s-2005-865751
Training & Testing

© Georg Thieme Verlag KG Stuttgart · New York

Comparison of the Type of Substrate Oxidation During Exercise Between Pre and Post Pubertal Markedly Obese Boys

F. Brandou1 , A. M. Savy-Pacaux2 , J. Marie2 , J. F. Brun1 , J. Mercier1
  • 1Service Central de Physiologie Clinique, Unité CERAMM (Centre d'Exploration et de Réadaptation des Anomalies Métaboliques et Musculaires), CHU Lapeyronie, Montpellier Cedex 5, France and Département de Physiologie des Interactions, EA 701 «Muscles et pathologies chroniques», Faculté de Médecine, Montpellier Cedex 2, France
  • 2Perle Cerdane, Maison d'enfants à caractère sanitaire spécialisé, Osseja Cedex, France
Further Information

Publication History

Accepted after revision: April 15, 2005

Publication Date:
01 February 2006 (online)

Abstract

The aim of this study was to investigate, in markedly obese children, the effect of puberty on substrate oxidation during an acute bout of exercise. Two groups of markedly obese boys (7 pre pubertal, 8 post pubertal, matched for adiposity) performed an exercise-test designed for measuring carbohydrate and fat oxidation with indirect calorimetry, and consisting of five six-minute steady-state workloads at 20, 30, 40, 50, and 60 % of the theoretical maximal aerobic power. Fat oxidation (mg · min-1) is correlated to fat free mass (FFM) (r = 0.7, p = 0.02). When expressed in crude flow rate units, fat oxidation is slightly higher in PostP than PreP children (p < 0.05). However, when expressed per unit of FFM or as a percentage of total fuel oxidation, fat oxidation is lower in PostP than PreP children (p < 0.05). Multivariable analysis shows that the influence of age on the ability to oxidize fat at exercise is explained by the pubertal increase in FFM. In markedly obese children during puberty, the ability of each kg of FFM to oxidize fat at exercise decreases (- 28 % at 20 %Wmax th), but the pubertal increase in FFM overcomes this effect, resulting in an increase in whole body ability to oxidize fat at exercise (+ 17,3 % at 20 %Wmax th).

References

  • 1 Achten J, Gleeson M, Jeukendrup A E. Determination of the exercise intensity that elicits maximal fat oxidation.  Med Sci Sports Exerc. 2002;  34 92-97
  • 2 Achten J, Jeukendrup A E. Optimizing fat oxidation through exercise and diet.  Nutrition. 2004;  20 716-727
  • 3 Arslanian S A, Kalhan S C. Correlations between fatty acid and glucose metabolism. Potential explanation of insulin resistance of puberty.  Diabetes. 1994;  43 908-914
  • 4 Bell R D, MacDougall J D, Billeter R, Howald H. Muscle fiber types and morphometric analysis of skeletal msucle in six-year-old children.  Med Sci Sports Exerc. 1980;  12 28-31
  • 5 Bloch C A, Clemons P, Sperling M A. Puberty decreases insulin sensitivity.  J Pediatr. 1987;  110 481-487
  • 6 Boisseau N, Delamarche P. Metabolic and hormonal responses to exercise in children and adolescents.  Sports Med. 2000;  30 405-422
  • 7 Brandou F, Dumortier M, Garandeau P, Mercier J, Brun J F. Effects of a two-month rehabilitation program on substrate utilization during exercise in obese adolescents.  Diabetes Metab. 2003;  29 20-27
  • 8 Brooks G A. Importance of the “crossover” concept in exercise metabolism.  Clin Exp Pharmacol Physiol. 1997;  24 889-895
  • 9 Cole T J. The LMS method for constructing normalized growth standards.  Eur J Clin Nutr. 1990;  44 45-60
  • 10 Cook J S, Hoffman R P, Stene M A, Hansen J R. Effects of maturational stage on insulin sensitivity during puberty.  J Clin Endocrinol Metab. 1993;  77 725-730
  • 11 Dumortier M, Brandou F, Perez-Martin A, Fedou C, Mercier J, Brun J F. Low intensity endurance exercise targeted for lipid oxidation improves body composition and insulin sensitivity in patients with the metabolic syndrome.  Diabetes Metab. 2003;  29 509-518
  • 12 Dumortier M, Perez-Martin A, Pierrisnard E, Mercier J, Brun J F. Regular exercise (3 · 45 min/wk) decreases plasma viscosity in sedentary obese, insulin resistant patients parallel to an improvement in fitness and a shift in substrate oxidation balance.  Clin Hemorheol Microcirc. 2002;  26 219-229
  • 13 Eriksson B O, Gollnick P D, Saltin B. Muscle metabolism and enzyme activities after training in boys 11 - 13 years old.  Acta Physiol Scand. 1973;  87 485-497
  • 14 Eriksson B O, Gollnick P D, Saltin B. The effect of physical training on muscle enzyme activities and fiber composition in 11-year-old boys.  Acta Paediatr Belg. 1974;  28 245-252
  • 15 Eriksson O, Saltin B. Muscle metabolism during exercise in boys aged 11 to 16 years compared to adults.  Acta Paediatr Belg. 1974;  28 257-265
  • 16 Fournier M, Ricci J, Taylor A W, Ferguson R J, Montpetit R R, Chaitman B R. Skeletal muscle adaptation in adolescent boys: sprint and endurance training and detraining.  Med Sci Sports Exerc. 1982;  14 453-456
  • 17 Goran M I, Gower B A. Longitudinal study on pubertal insulin resistance.  Diabetes. 2001;  50 2444-2450
  • 18 Haralambie G. Enzyme activities in skeletal muscle of 13 - 15 year old adolescents.  Bull Eur Physiopathol Respir. 1982;  18 65-74
  • 19 Houtkooper L B, Going S B, Lohman T G, Roche A F, Van Loan M. Bioelectrical impedance estimation of fat-free body mass in children and youth: a cross-validation study.  J Appl Physiol. 1992;  72 366-373
  • 20 INSERM .Obésité, dépistage et prévention de l'enfant. Paris; Expertise collective 2000
  • 21 Kanaley J A, Mottram C D, Scanlon P D, Jensen M D. Fatty acid kinetic responses to running above or below lactate threshold.  J Appl Physiol. 1995;  79 439-447
  • 22 Kelley D E, Goodpaster B H. Skeletal muscle triglyceride. An aspect of regional adiposity and insulin resistance.  Diabetes Care. 2001;  24 933-941
  • 23 Kuno S, Takahashi H, Fujimoto K, Akima H, Miyamaru M, Nemoto I, Itai Y, Katsuta S. Muscle metabolism during exercise using phosphorus-31 nuclear magnetic resonance spectroscopy in adolescents.  Eur J Appl Physiol. 1995;  70 301-304
  • 24 Le Stunff C, Bougneres P F. Time course of increased lipid and decreased glucose oxidation during early phase of childhood obesity.  Diabetes. 1993;  42 1010-1016
  • 25 Lexell J, Sjostrom M, Nordlund A S, Taylor C C. Growth and development of human muscle: a quantitative morphological study of whole vastus lateralis from childhood to adult age.  Muscle Nerve. 1992;  15 404-409
  • 26 MacRae H S, Noakes T D, Dennis S C. Role of decreased carbohydrate oxidation on slower rises in ventilation with increasing exercise intensity after training.  Eur J Appl Physiol. 1995;  71 523-529
  • 27 Maffeis C, Pinelli L, Schutz Y. Increased fat oxidation in prepubertal obese children: a metabolic defense against further weight gain?.  J Pediatr. 1995;  126 15-20
  • 28 Manetta J, Brun J F, Perez-Martin A, Callis A, Prefaut C, Mercier J. Fuel oxidation during exercise in middle-aged men: role of training and glucose disposal.  Med Sci Sports Exerc. 2002;  34 423-429
  • 29 Manetta J, Pérez-Martin A, Brun J F, Serre I, Ville N, Callis A, Prefaut C, Mercier J. Substrate oxidation during exercise in middle-aged men: effect of training and glucose disposal.  Am J Endocrinol Metab. 2002;  283 E929-936
  • 30 McGilvery R W, Goldstein G W. Biochemistry: A Function Approach. Philadelphia; Saunders 1983: 810-976
  • 31 Perez-Martin A, Dumortier M, Raynaud E, Brun J F, Fedou C, Bringer J, Mercier J. Balance of substrate oxidation during submaximal exercise in lean and obese people.  Diabetes Metab. 2001;  27 466-474
  • 32 Peronnet F, Massicotte D. Table of non-protein respiratory quotient; an update.  Can J Sport Sci. 1991;  16 23-29
  • 33 Petersen S R, Gaul C A, Stanton M M, Hanstock C C. Skeletal muscle metabolism during short-term, high-intensity exercise in prepubertal and pubertal girls.  J Appl Physiol. 1999;  87 2151-2156
  • 34 Riddell M C, Jamnik V K, Gledhill N. Fat oxidation rate curves and exercise intensity in prepubertal males.  Med Sci Sports Exerc. 2004;  36 217
  • 35 Rolland-Cachera M F, Cole T J, Sempé M, Tichet J, Rossignol C, Charraud A. Body mass index variations: centiles from birth to 87 years.  Eur J Clin Nutr. 1991;  45 13-21
  • 36 Serres I, Gautier V, Varray A, Prefaut C. Impaired skeletal muscle endurance related to physical inactivity and altered lung function in COPD patients.  Chest. 1998;  113 900-905
  • 37 Tanner J M, Whitehouse R H, Takaishi M. Standards from birth to maturity for height, weight, height velocity, and weight velocity: British children, 1965; I.  Arch Dis Child. 1966;  41 454-471
  • 38 Tanner J M, Whitehouse R H, Takaishi M. Standards from birth to maturity for height, weight, height velocity, and weight velocity: British children, 1965; II.  Arch Dis Child. 1966;  41 613-635
  • 39 Taylor D J, Kemp G J, Thompson C H, Radda G K. Ageing: effects on oxidative function of skeletal muscle in vivo.  Mol Cell Biochem. 1997;  174 321-324
  • 40 Thibault H, Rolland-Cachera M F. Obésité chez l'enfant, bases épidémiologiques,et nouvelles définitions.  Diabétologie, Nutrition et facteurs de risques. 1999;  7 56
  • 41 Wasserman K, Hansen J, Whipp B J. Principles of Exercise Testing and Interpretation. Philadelphia; Lea & Febiger 1986: 50-80
  • 42 Zanconoto S, Baraldi E, Santuz P, Rigon F, Vido L, Da Dalt L, Zachello F. Gas exchange during exercise in obese children.  Eur J Pediatr. 1989;  148 614-617

F. Brandou

Département de Physiologie des Interactions, EA 701 «Muscles et pathologies chroniques», Faculté de Médecine

Bd Henri IV

34060 Montpellier Cedex 2

France

Phone: + 33467600766

Fax: + 33 4 67 60 69 04

Email: fredbrandou@yahoo.fr

    >