Int J Sports Med 2006; 27(2): 112-116
DOI: 10.1055/s-2005-865634
Physiology & Biochemistry

© Georg Thieme Verlag KG Stuttgart · New York

Antioxidant Status of Interval-Trained Athletes in Various Sports

M. Dékány1 , V. Nemeskéri1 , I. Györe1 , I. Harbula1 , J. Malomsoki1 , J. Pucsok1
  • 1National Institute of Sport Medicine, Research Department, Budapest, Hungary
Weitere Informationen

Publikationsverlauf

Accepted after revision: March 7, 2005

Publikationsdatum:
30. August 2005 (online)

Abstract

Muscular exercise results in an increased production of free radicals and other forms of reactive oxygen species (ROS). Further, developing evidence implicates cytotoxins as an underlying etiology of exercise-induced stimuli in muscle redox status, which could result in muscle fatigue and/or injury. Two major classes of endogenous protective mechanisms (enzymatic and nonenzymatic antioxidants) work together to reduce the harmful effects of oxidants in the cell. This study examined the effects of acute physical exercise on the enzymatic antioxidant systems of different athletes and comparison was made to the mechanism of action of three main antioxidant enzymes in the blood. Handball players (n = 6), water-polo players (n = 20), hockey players (n = 22), basketball players (n = 24), and a sedentary control group (n = 10 female and n = 9 male) served as the subjects of this study. The athletes were divided into two groups according to the observed changes of activity of superoxid dismutase enzyme. The antioxidant enzyme systems were characterized by catalase (CAT), gluthation-peroxidase (GPX), and superoxid-dismutase (SOD) and measured by spectrophotometry. An important finding in the present investigation is that when the activities of SOD increased, the activities of GPX and CAT increased also and this finding related to the physical status of interval-trained athletes. Positive correlation between SOD and GPX activities was observed (r = 0.38 females, r = 0.56 males; p < 0.05). We have observed that the changes in the primary antioxidant enzyme systems of athletes are sport specific, and different from control subjects. Presumably, with interval-trained athletes, hydrogen-peroxide is significantly eliminated by gluthatione-peroxidase. From these results it can be concluded that the blood redox status should be taken into consideration when establishing a fitness level for individual athletes.

References

  • 1 Billat L V. Interval training for performance: A scientific and empirical practice - part I.  Sports Med. 2001;  31 13-31
  • 2 Billat L V. Interval training for performance: A scientific and empirical practice part II.  Sports Med. 2001;  31 75-90
  • 3 Brites F D, Evelson P A, Christiansen M G, Nicol M F, Basílico M J, Wikinski R W, Llesuy S F. Soccer players under regular training show oxidative stress but an improved plasma antioxidant status.  Clin Sci. 1999;  96 381-385
  • 4 Child R B, Wilkinson D M, Fallowfield J L. Effects of a training taper on tissue damage indices, serum antioxidant capacity and half-marathon running performance.  Int J Sports Med. 2000;  21 325-331
  • 5 Covas M I, Elosua R, Fitó M, Alcántara M, Coca L, Marrugat J. Relationship between physical activity and oxidative stress biomarkers in women.  Med Sci Sports Exerc. 2002;  34 814-819
  • 6 Dékány M, Nemeskéri V, Györe I, Ékes E, Pucsok J. The study of some antioxidants during intense physical effort.  Acta Physiol Hung. 2002;  89 290
  • 7 Duthie G G, Robertson J D, Maughan R J, Morrice P C. Blood antioxidant status and erythrocyte lipid peroxidation following distance running.  Arch Biochem Biophys. 1990;  282 78-83
  • 8 Góth L. A simple method for determination of serum catalase activity and revision of reference range.  Clin Chim Acta. 1991;  196 143-152
  • 9 Jenkins R R. Free radical chemistry relationship to exercise.  Sports Med. 1988;  5 156-170
  • 10 Ji L L. Antioxidant enzyme response to exercise and aging.  Med Sci Sports Exerc. 1993;  25 225-231
  • 11 Miyazaki H, Oh-ishi S, Ookawara T, Kizaki T, Toshinai K, Ha S, Haga S, Ji L L, Ohno H. Strenuous endurance training in humans reduces oxidative stress following exhausting exercise.  Eur J Appl Physiol. 2001;  84 1-6
  • 12 Ortenblad N, Madsen K, Djurhuus M S. Antioxidant status and lipid peroxidation after short-term maximal exercise in trained and untrained humans.  Am J Physiol. 1997;  272 1258-1263
  • 13 Paglia D E, Valentine W N. Studies on the qualitative characterization of erythrocyte glutathion peroxidase.  J Lab Clin Med. 1967;  70 158
  • 14 Perrin-Nadif R, Porcher J M, Dusch M, Mur J M, Auburtin G. Erythrocyte antioxidant enzyme activities in coal miners from three French regions.  Int Arch Occup Environ Health. 1998;  71 257-262
  • 15 Powers S K, Sen C K. Physiological antioxidants and exercise training. Sen CK, Packer L, Hänninen OOP Handbook of Oxidants and Antioxidants in Exercise. Amsterdam; Elsevier Science 2000: 221-243
  • 16 Schröder H, Navarro E, Tramullas A, Mora J, Galiano D. Nutrition antioxidant status and oxidative stress in professional basketball players: effects of a three compound antioxidative supplement.  Int J Sports Med. 2000;  21 146-150
  • 17 Sen C K. Oxidants and antioxidants in exercise.  J Appl Physiol. 1995;  79 675-686
  • 18 Sjödin B, Westing Y H, Apple F S. Biochemical mechanism for oxygen free radical formation during exercise.  Sports Med. 1990;  10 236-254
  • 19 Smith J A. Exercise, training and red blood cell turnover.  Sports Med. 1995;  19 9-31
  • 20 Suttle N FL, McMurray C H. Use of erythrocyte copper: zinc superoxide dismutase activity and hair or fleece copper concentration in the diagnosis of hypocuprosis in ruminants.  Res Vet Sci. 1983;  35 47-52
  • 21 Tappel A L. Glutathione peroxidase and hydroperoxides.  Methods Enzymol. 1978;  52 506-513
  • 22 Tauler P, Gimeno I, Aguiló A, Guix M P, Pons A. Regulation of erythrocyte antioxidant enzyme activities in athletes during competition and short-term recovery.  Eur J Physiol. 1999;  438 782-787
  • 23 Tomlin D L, Wenger H A. The relationship between aerobic fitness and recovery from high intensity intermittent exercise.  Sports Med. 2001;  31 1-11

M. Dékány

National Institute of Sport Medicine, Research Department

Alkotás street 48

1123 Budapest

Hungary

Telefon: + 3614886100289

Fax: + 36 1 4 88 61 69

eMail: dekany.miklos@mail.datanet.hu