Zusammenfassung
Ziel: Eine räumlich hochaufgelöste BOLD-basierte MR-Methode, die so genannte suszeptibilitätsgewichtete
Bildgebung (SWI), wurde zur Untersuchung des Einflusses von Karbogen auf zerebrale
Tumoren und zur Beurteilung der Tumoranatomie eingesetzt. Material und Methoden: Fünf Patienten mit zerebralen Tumoren (vier Glioblastome, ein Astrozytom Grad II)
wurden während Luft- und Karbogenatmung mit einer in erster Ordnung flusskompensierten
3D-Gradientenechosequenz (TE = 45 ms, TR = 67 ms, α = 25°, FOV = 256 × 192 × 64 mm³,
typische Matrix = 512 × 192 × 64) auf einem 1,5 T MR untersucht. Die Signaländerungen
zwischen den beiden Atembedingungen wurden bestimmt. Ergebnisse: Die Glioblastome zeigten starke, aber auch sehr heterogene Signaländerungen zwischen
+ 22,5 ± 4,9 % in Randbereichen und - 5,0 ± 0,4 % im Umgebungsödem. Das Astrozytom
zeigte eine Signalabnahme während der Karbogenatmung von - 3,1 ± 0,1 % im Tumorzentrum
und - 4,1 ± 0,1 % bis - 6,8 ± 0,3 % im peritumorösen Gewebe mit T2 -Hyperintensität. Schlussfolgerungen: SWI ermöglicht eine detaillierte Darstellung der zerebralen Anatomie und venösen
Vaskularisierung und erlaubt mit Hilfe von Karbogen eine räumlich hochaufgelöste lokale
Untersuchung zur Tumoraktivität.
Abstract
Purpose: To employ a high resolution blood oxygenation level dependent (BOLD) method called
susceptibility weighted imaging (SWI) together with the breathing of carbogen to investigate
the response of cerebral tumors to this breathing gas and to assess tumor anatomy
at high resolution. Methods: Five patients with cerebral tumors (four glioblastoma multiforme, one astrocytoma
[WHO grade II]) were studied using a susceptibility weighted 3D gradient echo, first
order velocity compensated sequence (TE = 45 ms, TR = 67 ms, α = 25°, FOV = 256 ×
192 × 64 mm³, typical matrix = 512 × 192 × 64), on a 1.5 T MR scanner while they were
breathing air and carbogen. Signal changes between the two breathing conditions were
investigated. Results: The glioblastomas showed strong but heterogeneous signal changes between carbogen
and air breathing, with changes between + 22.4 ± 4.9 % at the perimeter of the tumors
and - 5.0 ± 0.4 % in peritumoral areas that appeared hyperintense on T2 -weighted images. The astrocytoma displayed a signal decrease during carbogen breathing
(- 4.1 ± 0.1 % to - 6.8 ± 0.3 % in peritumoral areas that correspond to hyperintense
regions on T2 -weighted images, and - 3.1 ± 0.1 % in the tumor-center). Conclusions: SWI provides high resolution images of cerebral anatomy and venous vascularization.
Combined with hypercapnia it allows for regional assessment of tumor activity.
Key words
MRI - SWI - hypercapnia - BOLD - tumors
References
1
Rostrup E, Larsson H B, Toft P B. et al .
Functional MRI of CO2 induced increase in cerebral perfusion.
NMR Biomed.
1994;
7
29-34
2
Losert C, Peller M, Schneider P. et al .
Oxygen-Enhanced MRI of the Brain.
Magn Reson Med.
2002;
48
271-277
3
Griffiths J R, Taylor N J, Howe F A. et al .
The response of human tumors to carbogen breathing, monitored by Gradient-Recalled
Echo Magnetic Resonance Imaging.
Int J Radiat Oncol Biol Phys.
1997;
39
697-701
4
Watson N A, Beards S C, Altaf N. et al .
The effect of hyperoxia on cerebral blood flow: a study in healthy volunteers using
magnetic resonance phase-contrast angiography.
Eur J Anaesthesiol.
2000;
17
152-159
5
Floyd T F, Clark J M, Gelfand R. et al .
Independent cerebral vasoconstrictive effects of hyperoxia and accompanying arterial
hypocapnia at 1 ATA.
J Appl Physiol.
2003;
95
2453-2461
6
Kety S S, Schmidt C F.
The effects of altered arterial tensions of carbon dioxide and oxygen on cerebral
blood flow and cerebral oxygen consumption of normal young men.
J Clin Invest.
1948;
27
484-492
7
Kaanders J, Bussink J, van der Kogel A J.
ARCON: a novel biology-based approach in radiotherapy.
Lancet Oncol.
2002;
3
728-737
8
Robinson S P, Howe F A, Griffiths J R.
Noninvasive monitoring of carbogen-induced changes in tumor blood flow and oxygenation
by functional magnetic resonance imaging.
Int J Radiat Oncol Biol Phys.
1995;
33
855-859
9
Robinson S P, Rijken P F, Howe F A. et al .
Tumor vascular architecture and function evaluated by non-invasive susceptibility
MRI methods and immunohistochemistry.
J Magn Reson Imaging.
2003;
17
445-454
10
Haacke E M, Xu Y, Cheng Y CN. et al .
Susceptibility Weighted Imaging (SWI).
Magn Reson Med.
2004;
52
612-618
11
Reichenbach J R, Venkatesan R, Schillinger D. et al .
Small vessels in the human brain: MR-venography with deoxyhemoglobin as an intrinsic
contrast agent.
Radiology.
1997;
204
272-277
12
Barth M, Nöbauer-Huhmann I M, Reichenbach J R. et al .
High-resolution 3D contrast-enhanced BOLD MR-venography (CE-MRV) of brain tumors at
3 Tesla: First clinical experience and comparison with 1.5 Tesla.
Invest Radiol.
2003;
38
409-414
13
Tong K A, Ashwal S, Holshouser B A. et al .
Hemorrhagic shearing lesions in children and adolescents with posttraumatic diffuse
axonal injury: improved detection and initial results.
Radiology.
2003;
227
332-339
14
Tong K, Ashwal S, Holshouser B. et al .
Diffuse axonal injury in children: clinical correlation with hemorrhagic lesions.
Ann Neurol.
2004;
56
36-50
15
Lee B CP, Vo K D, Kido D. et al .
MR high-resolution blood oxygenation level-dependent venography of occult (low-flow)
vascular lesions.
AJNR.
1999;
20
1239-1242
16
Hermier M, Nighoghossian N.
Contribution of susceptibility-weighted imaging to acute stroke assessment.
Stroke.
2004;
35
1989-1994
17
Haacke E M, Herigault G, Yu Y. et al .
Observing Tumor Vascularity Noninvasively Using Magnetic Resonance Imaging.
Image Anal Stereol.
2002;
21
107-113
18
Reichenbach J R, Haacke E M.
High Resolution BOLD Venographic Imaging: A Window into Brain Function.
NMR Biomed.
2001;
14
453-467
19
Al-Hallaq H A, River J N, Zamora M. et al .
Correlation of Magnetic Resonance and Oxygen Microelectrode Measurements of Carbogen-Induced
Changes in Tumor Oxygenation.
Int J Radiation Oncology Biol Phys.
1998;
41
151-159
20
Dunn J, O’Hara J, Zaim-Wadghiri Y. et al .
Changes in oxygenation of intracranial tumors with carbogen: a BOLD MRI and EPR oximetry
study.
J Magn Reson Imaging.
2002;
16
511-521
21
Evelhoch J L, Gillies R J, Karczmar G S. et al .
Applications of magnetic resonance in model systems: cancer therapeutics.
Neoplasia.
2000;
2
152-165
22
Bussink J, Kaanders J H, Rijken P F.
Vascular architecture and microenvironmental parameters in human squamous cell carcinoma
xenografts: effects of carbogen and nicotinamide.
Radiother Oncol.
1999;
50
173-184
23
Rostrup E, Law I, Blinkenberg M. et al .
Regional Differences in the CBF and BOLD Responses to Hypercapnia A Combined PET and
fMRI Study.
NeuroImage.
2000;
11
87-97
24
Rauscher A, Sedlacik J, Barth M. et al .
Non-invasive Assessment of Vascular Architecture and Function During Modulated Blood
Oxygenation Using Susceptibility Weighted MRI (SWI).
Magn Reson Med.
2005 (in press);
PD Dr. Jürgen R. Reichenbach
AG Medizinische Physik, Institut für Diagnostische und Interventionelle Radiologie,
Friedrich Schiller Universität, Jena
Philosophenweg 3
07740 Jena
Deutschland
Phone: ++ 49/(0) 36 41/93 53 72
Fax: ++ 49/(0) 36 41/93 67 67
Email: juergen.reichenbach@med.uni-jena.de