Zusammenfassung
Ziel: Evaluation eines MR-Protokolls zur postoperativen Untersuchung des minimalinvasiv
angelegten A.-mammaria-interna-Bypass (MIDCAB) mittels kontrastmittelgestützter 3D-MR-Angiographie
und Bestimmung der Flussreserve. Material und Methoden: 19 symptomatische (Angina pectoris CCS I-III, intermittierende nicht anginatypische
thorakale Schmerzen, Narbenschmerzen) Patienten (59,9 ± 7,9 Jahre) nach MIDCAB wurden
6,9 ± 1,5 Jahre postoperativ untersucht. Die Bypassdarstellung erfolgte mit einer
nicht EKG-getriggerten MR-Angiographiesequenz (1,4 × 0,9 × 1,0 mm³, 22 s) in Atemstillstand
nach Gabe von 25 ml Gd-DTPA. Phasenkontrastflussmessungen (1,1 × 1,1 × 5 mm³, 42 ms
zeitliche Auflösung, retrospektives Gating, Venc 90 cm/s) im Bypass in Ruhe und nach
medikamentöser Stressbelastung mit Dipyridamol (0,56 mg/kg KG) folgten. Als Referenz
dienten die Multi-Detektor-CT-Angiographie (16-Zeilen-CT) und in 9 Fällen eine invasive
Bypassangiographie. Ergebnisse: Von den MIDCAB waren 4/19 (koronarangiographisch bestätigt) verschlossen und 4/19
hochgradig (> 70 %) stenosiert. Die Beurteilung der distalen Anastomose des LIMA-Bypass
gelang in 47 %. In den offenen Bypasses konnte ein signifikanter Flussanstieg von
in Ruhe 75,4 ± 33,3 ml/min auf 202,7 ± 49,6 ml/min nach Stressinduktion (p < 0,002)
gemessen werden. Mit der Kombination der MRA und Flussreservenbestimmung konnten alle
stenotischen Bypasses detektiert werden. Schlussfolgerung: Die Kombination der MR-Angiographie mit Flussmessung erhöht die Aussagekraft und
diagnostische Sicherheit der MRT in der postoperativen Verlaufskontrolle von Patienten
nach MIDCAB.
Abstract
Purpose: To evaluate graft patency, flow and flow reserve in patients with minimal invasive
direct coronary artery bypass (MIDCAB) of internal mammary artery (IMA) grafts using
a combined MR protocol with phase-contrast technique and MR angiography. Material and Methods: At a 1.5T Magnetom Sonata (SIEMENS), 19 symptomatic (angina CCS I-III, intermittent
thoracic discomfort, scar disorders) patients (59.9 ± 7.9 years old) with 19 left
internal mammary artery (LIMA) grafts implanted in minimal invasive technique were
examined 6.9 ± 1.5 years post surgery. Contrast enhanced MR angiography (TR 2.5 ms,
TE 1 ms, flip angle 20o , spatial resolution 1.4 × 0.9 × 1.0 mm³, breath hold technique, no ECG-triggering,
25 ml Gd-DTPA) was performed to assess bypass patency. Phase-contrast flow measurements
with retrospective gating (TR 41 msec, TE 3.2 msec, flip angle 30°, spatial resolution
1.1 × 1.1 × 5 mm³, temporal resolution 42 msec, venc 90 cm/sec) were applied in the
IMA grafts at rest and after stress induction with dipyridamole (0.56 mg/kg/BW). For
comparison, graft patency was evaluated by multidetector-row computed tomography (16-row
CT). In 9 patients a selective catheter angiography was performed. Results: MIDCAB grafts were occluded in 4/19 patients. In 4 patients the anastomosis to LAD
was highly stenotic (> 70 %) at MDCT (2 experienced investigators in consensus reading).
In MRA 9 grafts could be delineated completely including the distal anastomosis to
LAD (47 %). In 9 patients the distal part could not be evaluated. In patients with
patent grafts (MDCT), a significant improvement of graft flow (at rest 75.4 ± 33.3
ml/min; after stress 202.7 ± 49.6; P < 0.002) and flow reserve (patent grafts 3.0
± 1.1; stenotic grafts 1.5 ± 0.2, P < 0.02; occluded grafts 0.9 ± 0.2, P < 0.01) after
stress induction was detected. Diastolic-to-systolic peak velocity ratios (D/S-PVR)
at baseline were not significant between patent and stenotic grafts. Mean flow at
baseline and after stress induction and flow reserve show a high sensitivity (91/92
/83 %) and specificity (86 /100/83 %) for detection of graft stenosis. MR angiography
combined with flow reserve measurements could distinguish between occluded/stenotic
and patent grafts in all MIDCAB grafts. Conclusion: MR imaging allows combined assessment of bypass patency and flow with flow reserve
in patients after MIDCAB. The protocol of this study is applicable for the evaluation
of graft patency in patients after revascularization.
Key words
Magnetic resonance imaging - MR angiography - MIDCAB - MR flow quantification
Literatur
1
Coronary Artery Surgery Study (CASS) .
A Randomized Trial of Coronary Artery Bypass Surgery.
Circulation.
1983;
5
951-960
2
Calafiore A M, Di Giammarco G, Teodori G. et al .
Left anterior descending coronary artery grafting via left anterior small thoracotomy
without cardiopulmonary bypass.
Ann Thoracic Surg.
1996;
61
1658-1665
3
Possati G, Gaudino M, Alessandrini F. et al .
Minithoracotomy myocardial revascularization: results of early angiographic control.
G-Ital-Cardiol.
1997;
27
749-757
4
Cameron A, Davis K B, Green G. et al .
Coronary Bypass surgery with Internal-Thoracic-Artery Grafts - Effects on survival
over a 15-year period.
N Engl J Med.
1996;
334
216-219
5
Johnson L W, Krone R.
Cardiac catheterization 1991: a report of the Registry of the Society for Cardiac
Angiography and Interventions (SCA&I).
Cathet Cardiovasc Diagn.
1993;
28
219-220
6
Silber S, Finsterer S, Krischke I. et al .
Noninvasive angiography of coronary bypass grafts with cardio-CT in a cardiology practice.
Herz.
2003;
28
126-135
7
Nieman K, Pattynama P MT, Rensing B J. et al .
Evaluation of patients after coronary artery bypass surgery: CT angiographic assessment
of grafts and coronary arteries.
Radiology.
2003;
229
749-756
8
Wintersperger B J, Bastarrika G, Nikolaou K. et al .
EKG-gesteuerte Bypass-CT-Angiographie-Einsatz in der Darstellung arterieller Bypässe.
Radiologe.
2004;
44
140-145
9
Miller S, Scheule A M, Hahn U. et al .
MR angiography and flow quantification of the internal mammary artery graft after
minimally invasive direct coronary artery bypass.
Am-J-Roentgenol.
1999;
172
1365-1369
10
Ishida N, Sakuma H, Cruz B P. et al .
MR flow measurement in the internal mammary artery-to-coronary artery bypass graft:
comparison with graft stenosis at radiographic angiography.
Radiology.
2001;
220
441-447
11
Debatin J F, Strong J A, Sostman H D. et al .
MR Characterization of Blood Flow in Native and Grafted Internal Mammary Arteries.
J Magn Reson Imaging.
1993;
3
443-450
12
Langerak S E, Kunz P, Vliegen H W. et al .
Improved MR Flow mapping in Coronary Artery Bypass Grafts during adenosine-induced
stress.
Radiology.
2001;
218
540-547
13
Stauder N I, Miller S, Scheule A M. et al .
2D-Phasenkontrast-Flußquantifizierung und kontrastangehobene 3D-MR-Angiographie zur
perioperativen Untersuchung des Arteria mammaria interna Bypasses.
Fortschr Röntgenstr.
2001;
173
790-797
14
Wintersperger B J, Engelmann M G, von-Smekal A. et al .
Patency of coronary bypass grafts: assessment with breath-hold contrast-enhanced MR
angiography: value of a non-electrocardiographically triggered technique.
Radiology.
1998;
208
345-351
15
Brenner P, Wintersperger B, von Smekal A. et al .
Detection of coronary artery graft patency by contrast enhanced magnetic resonance
angiography.
Eur J of Cardio-thoracic Surgery.
1999;
15
389-393
16
Vrachliotis T G, Bis K G, Alibadi D A. et al .
Contrast-Enhanced Breath-Hold MR Angiography for Evaluating Patency of Coronary Artery
Bypass Grafts.
Am-J-Roentgenol.
1997;
168
1073-1080
17
Bunce N H, Lorenz C H, John A S. et al .
Coronary artery bypass graft patency: Assessment with true FISP imaging with steady-state
precession versus gadolinium-enhanced MR angiography.
Radiology.
2003;
227
440-446
18
Rubinstein R I, Askenase A D, Thickman D. et al .
Magnetic resonance imaging to evaluate patency of aortocoronary bypass grafts.
Circulation.
1987;
76
786-791
19
Galjee M A, van Rossum A C, Doesburg T. et al .
Quantification of coronary artery bypass graft flow by magnetic resonance phase velocity
mapping.
Magn Reson Imag.
1996;
14
485-493
20
Kreitner K F, Ehrhard K, Kunz R P. et al .
Koronare Bypassdiagnostik mit CT und MRT - eine Bestandsaufnahme.
Fortschr Röntgenstr.
2004;
176
1079-1088
21
Aurigemma G P, Reichek L, Axel L. et al .
Noninvasive determination of coronary artery bypass graft patency by cine magnetic
resonance imaging.
Circulation.
1989;
80
1595-1602
22
Langerak S E, Vliegen H W, de Roos A. et al .
Detection of vein graft disease using high-resolution magnetic resonance angiography.
Circulation.
2002;
105
328-333
23
Takagi T, Yoshikawa J, Yoshida K. et al .
Noninvasive assessment of left internal mammary artery graft patency using duplex
Doppler echocardiography from supraclavicular fossa.
J Am Coll Cardiol.
1993;
22
1647-1652
24
Bach R G, Kern M J, Donohue T J. et al .
Comparison of phasic blood flow velocity characteristics of arterial and venous coronary
artery bypass conduits.
Circulation.
1993;
88
II-133 - 140
25
Crowley J J, Shapiro L M.
Noninvasive assessment of left internal mammary artery graft patency using transthoracic
echocardiography.
Circulation.
1995;
92 (9 suppl)
II25-II30
26
Hoogendoorn L I, Pattynama P MT, Buis B. et al .
Noninvasive evaluation of aortocoronary bypass grafts with magnetic resonance flow
mapping.
Am J Cardiol.
1995;
75
845-848
Dr. med. Norbert I. Stauder
Abteilung Radiologische Diagnostik, Universitätsklinik Tübingen
Hoppe-Seyler-Straße 3
72076 Tübingen
Telefon: ++ 49/70 71/2 98 58 37
Fax: ++ 49/70 71/29 53 92
eMail: norbert.stauder@med.uni-tuebingen.de