Zusammenfassung
Ziel: Implementierung einer Bright-Blood MR-Koronarangiographie-Sequenz in Kombination
mit einem schichtselektiven Inversionspuls zur Darstellung des koronaren Blutflusses.
Material: Bei acht gesunden Probanden wurde das rechte Koronargefäßsystem mit einem 1,5-Tesla
MR-Tomographen (Gyroscan ACS-NT, Philips Medical Systems, Best, NL) mittels einer
navigatorgesteuerten EKG-getriggerten 3D-Steady-State Free-Frecession (SSFP)-Sequenz
mit radialer k-Raum-Abtastung untersucht. Die gleiche Sequenz wurde mit und ohne schichtselektiven
Inversionspuls durchgeführt, der entlang der Koronararterie, jedoch orthogonal zur
Bildebene und unter Ausschluss der Aorta geplant wurde. Bei beiden Sequenzen wurden
das Signal (SRV)- und Kontrast-zu-Rausch-Verhältnis (KRV) aus Signalintensitätsmessungen
im Gefäßlumen, epikardialen Fettgewebe, Blut im rechten Ventrikel und in der extrakorporalen
Luft ermittelt. Ferner wurden die dargestellte Gefäßlänge und die Kantenschärfe gemessen.
Ergebnisse: Die Verwendung eines selektiven Inversionspulses ermöglicht eine direkte Darstellung
des koronaren Blutflusses. Dabei wird exakt die Länge des Gefäßes dargestellt, die
das Blut während eines Herzzyklus zurücklegt. Die SSFP-Sequenz mit selektivem Inversionspuls
ergab ein höheres KRV zwischen koronarem und rechtsventrikulärem Blut und eine bessere
Darstellung der Gefäßkanten. Das SRV der Koronararterien und KRV zwischen Koronararterie
und epikardialem Fettgewebe war in beiden Sequenzen vergleichbar. Schlussfolgerung: Die Kombination einer 3D SSFP-Sequenz mit einem schichtselektiven Inversionspuls
ermöglicht die direkte Darstellung des koronaren Blutflusses und verstärkt den Kontrast
zwischen den Koronararterien und dem Blut im rechten Ventrikel.
Abstract
Purpose: Visualization of coronary blood flow by means of a slice-selective inversion pre-pulse
in concert with bright-blood coronary MRA. Materials and Methods: Coronary magnetic resonance angiography (MRA) of the right coronary artery (RCA)
was performed in eight healthy adult subjects on a 1.5 Tesla MR system (Gyroscan ACS-NT,
Philips Medical Systems, Best, NL) using a free-breathing navigator-gated and cardiac-triggered
3D steady-state free-precession (SSFP) sequence with radial k-space sampling. Imaging
was performed with and without a slice-selective inversion pre-pulse, which was positioned
along the main axis of the coronary artery but perpendicular to the imaging volume.
Objective image quality parameters such as SNR, CNR, maximal visible vessel length,
and vessel border definition were analyzed. Results: In contrast to conventional bright-blood 3D coronary MRA, the selective inversion
pre-pulse provided a direct measure of coronary blood flow. In addition, CNR between
the RCA and right ventricular blood pool was increased and the vessels had a tendency
towards better delineation. Blood SNR and CNR between right coronary blood and epicardial
fat were comparable in both sequences. Conclusion: The combination of a free-breathing navigator-gated and cardiac-triggered 3D SSFP
sequence with a slice-selective inversion pre-pulse allows for direct and directional
visualization of coronary blood flow with the additional benefit of improved contrast
between coronary and right ventricular blood pool.
Key words
Coronary MRA - steady-state free-precession (SSFP) - radial k-space sampling - slice-selective
inversion - coronary blood flow
References
1
Kim W Y, Danias P G, Stuber M. et al .
Coronary magnetic resonance angiography for the detection of coronary stenoses.
N Engl J Med.
2001;
345
1863-1869
2
Deshpande V S, Shea S M, Laub G. et al .
3D magnetization-prepared true-FISP: a new technique for imaging coronary arteries.
Magn Reson Med.
2001;
46
494-502
3
Spuentrup E, Bornert P, Botnar R M. et al .
Navigator-gated free-breathing three-dimensional balanced fast field echo (TrueFISP)
coronary magnetic resonance angiography.
Invest Radiol.
2002;
37
637-642
4
Barkhausen J, Hunold P, Jochims M. et al .
[Comparison of gradient-echo and steady state free precession sequences for 3D-navigator
MR angiography of coronary arteries].
Fortschr Röntgenstr.
2002;
174
725-730
5
Duerk J L, Lewin J S, Wendt M. et al .
Remember true FISP? A high SNR, near 1-second imaging method for T2-like contrast
in interventional MRI at.2 T.
J Magn Reson Imaging.
1998;
8
203-208
6
Spuentrup E, Katoh M, Buecker A. et al .
Free-breathing 3D steady-state free-precession coronary MR angiography with radial
k-space sampling: Comparison with cartesian k-space sampling and cartesian gradient
echo coronary MR angiography - Pilot study.
Radiology.
2004;
231
581-586
7
Wang S J, Hu B S, Macovski A. et al .
Coronary angiography using fast selective inversion recovery.
Magn Reson Med.
1991;
18
417-423
8
Stuber M, Bornert P, Spuentrup E. et al .
Selective three-dimensional visualization of the coronary arterial lumen using arterial
spin tagging.
Magn Reson Med.
2002;
47
322-329
9
Katoh M, Stuber M, Bucker A. et al .
Spin Labeling Coronary MR Angiography with Steady-State Free-Precession (SSFP) and
Radial k-Space Sampling - Initial Results in Healthy Volunteers.
Radiology.
(in press)
10
Stuber M, Botnar R M, Danias P G. et al .
Double-oblique free-breathing high resolution three-dimensional coronary magnetic
resonance angiography.
J Am Coll Cardiol.
1999;
34
524-531
11
Scheffler K, Lehnhardt S.
Principles and applications of balanced SSFP techniques.
Eur Radiol.
2003;
13
2409-2418
12
Stuber M, Botnar R M, Danias P G. et al .
Submillimeter three-dimensional coronary MR angiography with real-time navigator correction:
comparison of navigator locations.
Radiology.
1999;
212
579-587
13
Etienne A, Botnar R M, Van Muiswinkel A M. et al .
“Soap-Bubble” visualization and quantitative analysis of 3D coronary magnetic resonance
angiograms.
Magn Reson Med.
2002;
48
658-666
14
Botnar R M, Stuber M, Danias P G. et al .
Improved coronary artery definition with T2-weighted, free-breathing, three-dimensional
coronary MRA.
Circulation.
1999;
99
3139-3148
15
Keegan J, Gatehouse P D, John A S. et al .
Breath-hold signal-loss sequence for the qualitative assessment of flow disturbances
in cardiovascular MR.
J Magn Reson Imaging.
2003;
18
496-501
16
Fayad Z A, Fuster V, Fallon J T. et al .
Noninvasive in vivo human coronary artery lumen and wall imaging using black-blood
magnetic resonance imaging.
Circulation.
2000;
102
506-510
17
Botnar R M, Stuber M, Kissinger K V. et al .
Noninvasive coronary vessel wall and plaque imaging with magnetic resonance imaging.
Circulation.
2000;
102
2582-2587
18
Spuentrup E, Katoh M, Stuber M. et al .
Coronary MR Imaging Using Free-Breathing 3D Steady-State Free Precession with Radial
k-space Sampling.
Fortschr Röntgenstr.
2003;
175
1330-1334
1 This work is supported in part by a Biomedical Engineering Grant from the Whitaker
Foundation (RG-02-0745), a grant from the Donald W. Reynolds Foundation and by the
National Institutes of Health (HL61912).
1 Dr. Stuber is compensated as a consultant by Philips Medical Systems NL, the manufacturer
of equipment described in this presentation. The terms of this arrangement have been
approved by the Johns Hopkins University in accordance with its conflict of interest
policies.
Marcus Katoh, MD
Department of Diagnostic Radiology, University Hospital, University of Technology
(RWTH)
Pauwelsstraße 30
52057 Aachen
Germany
Phone: ++ 49/2 41/80-8 83 32
Fax: ++ 49/2 41/80-8 24 11
Email: katoh@rad.rwth-aachen.de