Plant Biol (Stuttg) 2005; 7(2): 190-194
DOI: 10.1055/s-2005-837540
Research Paper

Georg Thieme Verlag Stuttgart KG · New York

Heritable Variation in Seed Sex Ratio of the Stinging Nettle (Urtica dioica)

T. J. de Jong1 , H. W. Nell1 , G. A. Glawe1
  • 1Institute of Biology, Leiden University, P.O. Box 9516, 2300RA Leiden, The Netherlands
Weitere Informationen


Received: October 5, 2004

Accepted: January 5, 2005

11. April 2005 (online)


Male and female flowering plants of the dioecious Urtica dioica occur in approximately equal numbers in our study area on the coastal sand dunes of Meijendel. The seed sex ratio (SSR, fraction of males) collected from female plants in the field varied between 0.05 and 0.76, and differed significantly between maternal parents. After one generation of selection for either high or low SSR, female plants produced seed batches with sex ratios as extreme as 0.08 and 0.73. Natural populations of U. dioica harbour considerable genetic variation in SSR.


  • 1 Ainsworth C., Parker J., Buchanan-Wollaston V.. Sex determination in plants.  Current Topics in Developmental Biology. (1998);  3 167-223
  • 2 Alström-Rapaport C., Lascoux M., Gullberg U.. Sex determination and sex ratio in the dioecious shrub Salix viminalis. .  Theoretical and Applied Genetics. (1997);  94 493-497
  • 3 Bull J. J., Charnov E. L.. How fundamental are Fisherian sex ratios?.  Oxford Surveys in Evolutionary Biology. (1988);  5 96-135
  • 4 Charnov E. L.. The Theory of Sex Allocation. Princeton; Princeton University Press (1982)
  • 5 Chattopadhyah D., Sharma A. K.. Sex determination in dioecious species of plants.  Feddes Repertorium. (1991);  102 29-55
  • 6 Correns C.. Bestimmung, Vererbung und Verteilung des Geschlechtes bei den Höheren Pflanzen. Berlin; Borntraeger (1928)
  • 7 Cosmides L. M., Tooby J.. Cytoplasmic inheritance and intragenomic conflict.  Journal of Theoretical Biology. (1981);  89 83-129
  • 8 Couvet D., Ronce O., Gliddon C.. The maintenance of nucleocytoplasmic polymorphism in a metapopulation: the case of gynodioecy.  American Naturalist. (1998);  152 59-70
  • 9 van Damme J. M. M.. A restorer gene in gynodioecious Plantago coronopus subject to selection in the gametophytic and seedling stage.  Heredity. (1991);  66 19-27
  • 10 Delph L. F.. Sexual dimorphism in life history. Geber, M. A., Dawson, T. E., and Delph, L. F., eds. Gender and Sexual Dimorphism in Flowering Plants. Berlin; Springer Verlag (1999): 149-174
  • 11 Durand B., Durand R.. Sex determination and reproductive organ differentiation in Mercurialis. .  Plant Science. (1991);  80 49-65
  • 12 Fisher R. A.. The Genetical Theory of Natural Selection. Oxford; Clarendon Press (1930)
  • 13 Frank S. A., Barr C. M.. Spatial dynamics of cytoplasmic male sterility. Silvertown, J. and Antonovics, J., eds. Integrating Ecology and Evolution in a Spatial Context. Oxford; Blackwell Science (2001): 219-243
  • 14 Glawe G. A., de Jong T. J.. Environmental conditions affect sex expression in monoecious, but not in male and female plants of Urtica dioica. .  Sexual Plant Reproduction. (2005);  17 253-260
  • 15 Gouyon P. H., Vichot F., van Damme J. M. M.. Nuclear-cytoplasmic male sterility: single-point equilibria versus limit cycles.  American Naturalist. (1991);  137 498-514
  • 16 Greig-Smith P.. Biological flora of the British Isles. Urtica. .  Journal of Ecology. (1948);  36 339-355
  • 17 Hardy I. C. W.. Sex Ratios: Concepts and Research Methods. Cambridge; Cambridge University Press (2002)
  • 18 de Jong T. J., Batenburg F. H. D., van Dijk J.. Seed sex ratio in dioecious plants depends on relative dispersal of pollen and seeds: an example using a chessboard simulation model.  Journal of Evolutionary Biology. (2002);  15 373-379
  • 19 Kay Q. O. N., Stevens D. P.. The frequency, distribution and reproductive biology of dioecious species in the native flora of Britain and Ireland.  Botanical Journal of the Linnean Society. (1986);  92 39-64
  • 20 Koelewijn H. P., van Damme J. M. M.. Genetics of male sterility in gynodioecious Plantago coronopus. I. Cytoplasmic variation.  Genetics. (1995);  139 1749-1758
  • 21 Korpelainen H.. Patterns of resource allocation in male and female plants of Rumex acetosa and Rumex acetosella. .  Oecologia. (1992);  89 133-139
  • 22 Louis J. P., Durand B.. Studies with the dioecious angiosperm Mercurialis annua L. (2n = 16): correlation between genic and cytoplasmic male sterility, sex segregation and feminizing hormones (cytokinins).  Molecular and General Genetics. (1978);  165 309-322
  • 23 Louis J. P.. Genes for regulation of sex differentation and male fertility in Mercurialis annua. .  Journal of Heredity. (1989);  80 104-111
  • 24 Meagher T. R.. Population biology of Chamaelirium luteum, a dioecious lily. II. Mechanisms governing sex ratios.  Evolution. (1981);  35 557-567
  • 25 McCauley D. E., Taylor D. R.. Local population structure and sex ratio: evolution in gynodioecious plants.  American Naturalist. (1997);  150 406-419
  • 26 Pollard A. J., Briggs D.. Genecological studies of Urtica dioica L. II. Patterns of variation at Wicken Fen, Cambridgeshire, England.  New Phytologist. (1984);  96 483-499
  • 27 Saur M. J., Wade M. J.. A synthetic review of the evolution of gynodioecy.  American Naturalist. (2003);  161 837-851
  • 28 Sokal R. R., Rohlf F. J.. Biometry: The Principles and Practice of Statistics in Biological Research. New York; WH Freeman (1998)
  • 29 Taylor D. R.. The genetic basis of sex ratio in Silene alba (= S. latifolia). .  Genetics. (1994);  136 641-651
  • 30 Taylor D. R.. Genetics of sex ratio variation among natural populations of a dioecious plant.  Evolution. (1999);  53 55-62
  • 31 Taylor D. R., Saur M. J., Adams E.. Pollen performance and sex-ratio evolution in a dioecious plant.  Evolution. (1999);  53 203-218
  • 32 Taylor P. D.. Sex ratio in a stepping stone population with sex-specific dispersal.  Theoretical Population Biology. (1994);  45 203-218
  • 33 Uyenoyama M. K., Bengtsson B. O.. Towards a genetic theory for the evolution of the sex ratio. III Parental and sibling control of brood investment ratio under partial sib-mating.  Theoretical Population Biology. (1982);  22 43-68
  • 34 Vekemans X., Hardy O.. New insights from spatial genetic structure analyses in plant populations.  Molecular Ecology. (2004);  13 921-935
  • 35 Westergaard M.. The mechanism of sex determination in flowering plants.  Advances in Genetics. (1958);  9 217-281

T. J. de Jong

Institute of Biology
Leiden University

P.O. Box 9516

2300RA Leiden

The Netherlands


Editor: M. Koornneef