Abstract
Brassinosteroids (BRs) are highly potent growth-promoting sterol derivatives. BR-deficient
or BR-insensitive mutants display dwarfism. Whole plants and excised tissues have
been used to analyse the mechanisms involved in BR-promoted growth. BR stimulates
cell elongation and cell division, and BR has specific effects on differentiation.
Underlying physiological pathways include modification of cell wall properties, effects
on carbohydrate assimilation and allocation, and control of aquaporin activities.
BR apparently coordinates and integrates diverse processes required for growth, partly
via interactions with other phytohormones setting the frame for BR responses. Ultimately,
BR-promoted growth is mediated through genomic pathways. Positive regulators of the
BR response (such as BZR1 and BES1) and putative downstream components (such as EXO)
are involved in the regulation of BR-responsive genes and growth promotion. BR-responsive
genes have been identified in several plant species. However, causal links between
physiological effects and changes of transcript patterns, for the most part, are still
unresolved. This review focuses on physiology and molecular mechanisms underlying
BR-promoted growth in the different plant organs. Interactions with other phytohormones
are discussed.
Key words
Brassinosteroid - cell division - cell elongation - growth
References
- 1
Altmann T..
Molecular physiology of brassinosteroids revealed by the analysis of mutants.
Planta.
(1999);
208
1-11
- 2
Arteca J. M., Arteca R. N..
Brassinosteroid-induced exaggerated growth in hydroponically grown Arabidopsis plants.
Physiologia Plantarum.
(2001);
112
104-112
- 3
Asami T., Min Y. K., Nagata N., Yamagishi K., Takatsuto S., Fujioka S., Murofushi N.,
Yamaguchi I., Yoshida S..
Characterization of brassinazole, a triazole-type brassinosteroid biosynthesis inhibitor.
Plant Physiology.
(2000);
123
93-99
- 4
Azpiroz R., Wu Y. W., Locascio J. C., Feldmann K. A..
An Arabidopsis brassinosteroid-dependent mutant is blocked in cell elongation.
Plant Cell.
(1998);
10
219-230
- 5
Bajguz A., Tretyn A..
The chemical characteristic and distribution of brassinosteroids in plants.
Phytochemistry.
(2003);
62
1027-1046
- 6
Bancos S., Nomura T., Sato T., Molnar G., Bishop G.. J., Koncz C., Yokota T., Nagy F.,
Szekeres M..
Regulation of transcript levels of the Arabidopsis cytochrome P450 genes involved in brassinosteroid biosynthesis.
Plant Physiology.
(2002);
130
504-513
- 7
Bishop G. J..
Brassinosteroid mutants of crops.
Journal of Plant Growth Regulation.
(2003);
22
325-335
- 8
Bishop G. J., Harrison K., Jones J. D. G..
The tomato Dwarf gene isolated by heterologous transposon tagging encodes the first member of a new
cytochrome P450 family.
Plant Cell.
(1996);
8
959-969
- 9
Bishop G. J., Nomura T., Yokota T., Harrison K., Noguchi T., Fujioka S., Takatsuto S.,
Jones J. D. G., Kamiya Y..
The tomato DWARF enzyme catalyses C-6 oxidation in brassinosteroid biosynthesis.
Proceedings of the National Academy of Sciences of the USA.
(1999);
96
1761-1766
- 10
Bouquin T., Meier C., Foster R., Nielsen M. E., Mundy J..
Control of specific gene expression by gibberellin and brassinosteroid.
Plant Physiology.
(2001);
127
450-458
- 11
Braun P., Wild A..
The influence of brassinosteroid on growth and parameters of photosynthesis of wheat
and mustard plants.
Journal of Plant Physiology.
(1984);
116
189-196
- 12
Cerana R., Bonetti A., Marre M. T., Romani G., Lado P., Marre E..
Effects of a brassinosteroid on growth and electrogenic proton extrusion in Azuki
bean epicotyls.
Physiologia Plantarum.
(1983);
59
23-27
- 13
Choe S., Fujioka S., Noguchi T., Takatsuto S., Yoshida S., Feldmann K. A..
Overexpression of DWARF4 in the brassinosteroid biosynthetic pathway results in increased vegetative growth
and seed yield in Arabidopsis.
.
The Plant Journal.
(2001);
26
573-582
- 14
Choe S., Schmitz R. J., Fujioka S., Takatsuto S., Lee M. O., Yoshida S., Feldmann K. A.,
Tax F. E..
Arabidopsis brassinosteroid-insensitive dwarf12 mutants are semidominant and defective in a glycogen synthase kinase 3b-like kinase.
Plant Physiology.
(2002);
130
1506-1515
- 15
Chono M., Honda I., Zeniya H., Yoneyama K., Saisho D., Takeda K., Takatsuto S., Hoshino T.,
Watanabe Y..
A semidwarf phenotype of barley uzu results from a nucleotide substitution in the
gene encoding a putative brassinosteroid receptor.
Plant Physiology.
(2003);
133
1209-1219
- 16
Clouse S. D..
Brassinosteroid signal transduction: clarifying the pathway from ligand perception
to gene expression.
Molecular Cell.
(2002 a);
10
973-982
- 17
Clouse S. D..
Arabidopsis mutants reveal multiple roles for sterols in plant development.
Plant Cell.
(2002 b);
14
1995-2000
- 18
Clouse S. D., Langford M., McMorris T. C..
A brassinosteroid-insensitive mutant in Arabidopsis thaliana exhibits multiple defects in growth and development.
Plant Physiology.
(1996);
111
671-678
- 19
Clouse S. D., Hall A. F., Langford M., McMorris T. C., Baker M. E..
Physiological and molecular effects of brassinosteroids on Arabidopsis thaliana.
.
Journal of Plant Growth Regulation.
(1993);
12
61-66
- 20
Coll-Garcia D., Mazuch J., Altmann T., Müssig C..
EXORDIUM regulates brassinosteroid-responsive genes.
FEBS Letters.
(2004);
563
82-86
- 21
De Michelis M. I., Lado P..
Effects of a brassinosteroid on growth and on H+ extrusion in isolated radish cotyledons: comparison with the effects of benzyladenine.
Physiologia Plantarum.
(1986);
68
603-607
- 22
Friedrichsen D. M., Joazeiro C. A. P., Li J. M., Hunter T., Chory J..
Brassinosteroid-insensitive-1 is a ubiquitously expressed leucine-rich repeat receptor
serine/threonine kinase.
Plant Physiology.
(2000);
123
1247-1255
- 23
Friedrichsen D. M., Nemhauser J., Muramitsu T., Maloof J. N., Alonso J., Ecker J. R.,
Furuya M., Chory J..
Three redundant brassinosteroid early response genes encode putative bHLH transcription
factors required for normal growth.
Genetics.
(2002);
162
1445-1456
- 24 Fujioka S..
Natural occurrence of brassinosteroids in the plant kingdom. Sakurai, A., Yokota, T., and Clouse, S. D., eds. Brassinosteroids: Steroidal Plant
Hormones. Berlin, New York; Springer (1999): 21-45
- 25
Goda H., Sawa S., Asami T., Fujioka S., Shimada Y., Yoshida S..
Comprehensive comparison of auxin-regulated and brassinosteroid-regulated genes in
Arabidopsis.
.
Plant Physiology.
(2004);
134
1555-1573
- 26
Goetz M., Godt D. E., Roitsch T..
Tissue-specific induction of the mRNA for an extracellular invertase isoenzyme of
tomato by brassinosteroids suggests a role for steroid hormones in assimilate partitioning.
The Plant Journal.
(2000);
22
515-522
- 27
Gregory L. E..
Acceleration of plant growth through seed treatment with brassins.
American Journal of Botany.
(1981);
68
586-588
- 28
Gregory L. E., Mandava N. B..
The activity and interaction of brassinolide and gibberellic-acid in mung bean epicotyls.
Physiologia Plantarum.
(1982);
54
239-243
- 29
Grove M. D., Spencer G. F., Rohwedder W. K., Mandava N., Worley J. F., Warthen J. D. J. R.,
Steffens G. L., Flippen-Anderson J. L., Cook J. C. J. R..
Brassinolide, a plant growth promoting steroid isolated from Brassica napus pollen.
Nature.
(1979);
281
216-217
- 30
Guan M., Roddick J. G..
Epibrassinolide inhibition of development of excised, adventitious and intact roots
of tomato (Lycopersicon esculentum): comparison with the effects of steroidal estrogens.
Physiologia Plantarum.
(1988);
74
720-726
- 31
Halliday K. J., Fankhauser C..
Phytochrome-hormonal signalling networks.
The New Phytologist.
(2003);
157
449-463
- 32
He J. X., Gendron J. M., Yang Y. L., Li J. M., Wang Z. Y..
The GSK3-like kinase BIN2 phosphorylates and destabilizes BZR1, a positive regulator
of the brassinosteroid signaling pathway in Arabidopsis.
.
Proceedings of the National Academy of Sciences of the USA.
(2002);
99
10185-10190
- 33
Hong Z., Ueguchi-Tanaka M., Shimizu-Sato S., Inukai Y., Fujioka S., Shimada Y., Takatsuto S.,
Agetsuma M., Yoshida S., Watanabe Y., Uozu S., Kitano H., Ashikari M., Matsuoka M..
Loss-of-function of a rice brassinosteroid biosynthetic enzyme, C-6 oxidase, prevents
the organized arrangement and polar elongation of cells in the leaves and stem.
The Plant Journal.
(2002);
32
495-508
- 34
Hong Z., Ueguchi-Tanaka M., Umemura K., Uozu S., Fujioka S., Takatsuto S., Yoshida S.,
Ashikari M., Kitano H., Matsuoka M..
A rice brassinosteroid-deficient mutant, ebisu dwarf (d2), is caused by a loss of function of a new member of cytochrome P450.
Plant Cell.
(2003);
15
2900-2910
- 35 Ikekawa N., Zhao Y. J..
Application of 24-epibrassinolide in agriculture. Cutler, H. G., Yokota, T., and Adam, G., eds. Brassinosteroids: Chemistry, Bioactivity,
and Applications. Washington, D.C.; American Chemical Society (1991): 280-291
- 36
Jiang J. R., Clouse S. D..
Expression of a plant gene with sequence similarity to animal TGF-β receptor interacting
protein is regulated by brassinosteroids and required for normal plant development.
The Plant Journal.
(2001);
26
35-45
- 37 Kamuro Y., Takatsuto S..
Capability for and problems of practical uses of brassinosteroids. Cutler, H. G., Yokota, T., and Adam, G., ed. Brassinosteroids: Chemistry, Bioactivity,
and Applications. Washington, D.C.; American Chemical Society (1991): 292-297
- 38 Kamuro Y., Takatsuto S..
Practical application of brassinosteroids in agricultural fields. Sakurai, A., Yokota, T., and Clouse, S. D., eds. Brassinosteroids: Steroidal Plant
Hormones. Berlin, New York; Springer (1999): 223-241
- 39
Kang J. G., Yun J., Kim D. H., Chung K. S., Fujioka S., Kim J. I., Dae H. W., Yoshida S.,
Takatsuto S., Song P. S., Park C. M..
Light and brassinosteroid signals are integrated via a dark-induced small G protein
in etiolated seedling growth.
Cell.
(2001);
105
625-636
- 40
Katsumi M..
Interaction of a brassinosteroid with IAA and GA3 in the elongation of cucumber hypocotyl
sections.
Plant and Cell Physiology.
(1985);
26
615-626
- 41
Kauschmann A., Jessop A., Koncz C., Szekeres M., Willmitzer L., Altmann T..
Genetic evidence for an essential role of brassinosteroids in plant development.
The Plant Journal.
(1996);
9
701-713
- 42
Khripach V., Zhabinskii V., De Groot A..
Twenty years of brassinosteroids: steroidal plant hormones warrant better crops for
the XXI century.
Annals of Botany.
(2000);
86
441-447
- 43
Kim S. K., Chang S. C., Lee E. J., Chung W. S., Kim Y. S., Hwang S., Lee J. S..
Involvement of brassinosteroids in the gravitropic response of primary root of maize.
Plant Physiology.
(2000);
123
997-1004
- 44 Kohout L., Strnad M., Kaminek M..
Types of Brassinosteroids and Their Bioassays. Cutler, H. G., Yokota, T., and Adam, G., eds. Brassinosteroids: Chemistry, Bioactivity,
and Applications. Washington, D.C.; American Chemical Society (1991): 56-73
- 45
Koka C. V., Cerny R. E., Gardner R. G., Noguchi T., Fujioka S., Takatsuto S., Yoshida S.,
Clouse S. D..
A putative role for the tomato genes DUMPY and CURL-3 in brassinosteroid biosynthesis and response.
Plant Physiology.
(2000);
122
85-98
- 46
Li J., Wen J. Q., Lease K. A., Doke J. T., Tax F. E., Walker J. C..
BAK1, an Arabidopsis LRR receptor-like protein kinase, interacts with BRI1 and modulates brassinosteroid
signaling.
Cell.
(2002);
110
213-222
- 47
Li J. M., Chory J..
A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal
transduction.
Cell.
(1997);
90
929-938
- 48
Li J. M., Nagpal P., Vitart V., McMorris T. C., Chory J..
A role for brassinosteroids in light-dependent development of Arabidopsis.
.
Science.
(1996);
272
398-401
- 49
Li J. M., Nam K. H., Vafeados D., Chory J..
BIN2, a new brassinosteroid-insensitive locus in Arabidopsis.
.
Plant Physiology.
(2001);
127
14-22
- 50
Lösel R., Wehling M..
Nongenomic actions of steroid hormones.
Nature Reviews Molecular Cell Biology.
(2003);
4
46-56
- 51
Mandava N. B..
Plant growth-promoting brassinosteroids.
Annual Review of Plant Physiology and Plant Molecular Biology.
(1988);
39
23-52
- 52
Mandava N. B., Sasse J. M., Yopp J. H..
Brassinolide, a growth promoting steroidal lactone II. Activity in selected gibberellin
and cytokinin bioassays.
Physiologia Plantarum.
(1981);
53
453-461
- 53
Mandava N. B., Thompson M. J., Yopp J. H..
Effects of selected inhibitors of RNA and protein synthesis on brassinosteroid-induced
responses in mung bean epicotyls.
Journal of Plant Physiology.
(1987);
128
53-66
- 54
Montoya T., Nomura T., Farrar K., Kaneta T., Yokota T., Bishop G. J..
Cloning the tomato Curl3 gene highlights the putative dual role of the leucine-rich repeat receptor kinase
tBRI1/SR160 in plant steroid hormone and peptide hormone signaling.
Plant Cell.
(2002);
14
3163-3176
- 55
Mora-Garcia S., Vert G., Yin Y., Cano-Delgado A., Cheong H., Chory J..
Nuclear protein phosphatases with Kelch-repeat domains modulate the response to brassinosteroids
in Arabidopsis.
.
Genes & Development.
(2004);
18
448-460
- 56
Mori M., Nomura T., Ooka H., Ishizaka M., Yokota T., Sugimoto K., Okabe K., Kajiwara H.,
Satoh K., Yamamoto K., Hirochika H., Kikuchi S..
Isolation and characterization of a rice dwarf mutant with a defect in brassinosteroid
biosynthesis.
Plant Physiology.
(2002);
130
1152-1161
- 57
Morillon R., Catterou M., Sangwan R. S., Sangwan B. S., Lassalles J. P..
Brassinolide may control aquaporin activities in Arabidopsis thaliana.
.
Planta.
(2001);
212
199-204
- 58
Müssig C., Altmann T..
Genomic brassinosteroid effects.
Journal of Plant Growth Regulation.
(2003);
22
313-324
- 59
Müssig C., Shin G. H., Altmann T..
Brassinosteroids promote root growth in Arabidopsis.
.
Plant Physiology.
(2003);
133
1261-1271
- 60
Nakaya M., Tsukaya H., Murakami N., Kato M..
Brassinosteroids control the proliferation of leaf cells of Arabidopsis thaliana.
.
Plant and Cell Physiology.
(2002);
43
239-244
- 61
Nam K. H., Li J. M..
BRI1/BAK1, a receptor kinase pair mediating brassinosteroid signaling.
Cell.
(2002);
110
203-212
- 62
Nomura T., Bishop G. J., Kaneta T., Reid J. B., Chory J., Yokota T..
The LKA gene is a BRASSINOSTEROID INSENSITIVE 1 homolog of pea.
The Plant Journal.
(2003);
36
291-300
- 63
Nomura T., Jager C. E., Kitasaka Y., Takeuchi K., Fukami M., Yoneyama K., Matsushita Y.,
Nyunoya H., Takatsuto S., Fujioka S., Smith J. J., Kerckhoffs L. H. J., Reid J. B.,
Yokota T..
Brassinosteroid deficiency due to truncated steroid 5a-reductase causes dwarfism in
the lk mutant of pea.
Plant Physiology.
(2004);
135
2220-2229
- 64
Nomura T., Kitasaka Y., Takatsuto S., Reid J. B., Fukami M., Yokota T..
Brassinosteroid/sterol synthesis and plant growth as affected by lka and lkb mutations of pea.
Plant Physiology.
(1999);
119
1517-1526
- 65
Nomura T., Nakayama M., Reid J. B., Takeuchi Y., Yokota T..
Blockage of brassinosteroid biosynthesis and sensitivity causes dwarfism in garden
pea.
Plant Physiology.
(1997);
113
31-37
- 66
Oh M. H., Romanow W. G., Smith R. C., Zamski E., Sasse J., Clouse S. D..
Soybean BRU1 encodes a functional xyloglucan endotransglycosylase that is highly expressed in
inner epicotyl tissues during brassinosteroid-promoted elongation.
Plant and Cell Physiology.
(1998);
39
124-130
- 67
Park W. J..
Effect of epibrassinolide on hypocotyl growth of the tomato mutant diageotropica.
.
Planta.
(1998);
207
120-124
- 68
Peng P., Li J. M..
Brassinosteroid signal transduction: a mix of conservation and novelty.
Journal of Plant Growth Regulation.
(2003);
22
298-312
- 69
Perez-Perez J. M., Ponce M. R., Micol J. L..
The UCU1 Arabidopsis gene encodes a SHAGGY/GSK3-like kinase required for cell expansion along the proximodistal
axis.
Developmental Biology.
(2002);
242
161-173
- 70
Ramahaleo T., Morillon R., Joel A., Lassalles J.-P..
Osmotic water permeability of isolated protoplasts. Modifications during development.
Plant Physiology.
(1999);
119
885-896
- 71 Roddick J. G., Guan M..
Brassinosteroids and root development. Cutler, H. G., Yokota, T., and Adam, G., eds. Brassinosteroids: Chemistry, Bioactivity,
and Applications. Washington, D.C.; American Chemical Society (1991): 231-245
- 72
Roddick J. G., Ikekawa N..
Modification of root and shoot development in monocotyledon and dicotyledon seedlings
by 24-epibrassinolide.
Journal of Plant Physiology.
(1992);
140
70-74
- 73 Sasse J..
Physiological actions of brassinosteroids. Sakurai, A., Yokota, T., and Clouse, S. D., eds. Brassinosteroids: Steroidal Plant
Hormones. Berlin, New York; Springer (1999): 137-161
- 74
Sasse J. M..
Physiological actions of brassinosteroids: an update.
Journal of Plant Growth Regulation.
(2003);
22
276-288
- 75
Schultz L., Kerckhoffs L. H. J., Klahre U., Yokota T., Reid J. B..
Molecular characterization of the brassinosteroid-deficient lkb mutant in pea.
Plant Molecular Biology.
(2001);
47
491-498
- 76
Sekimoto H., Hoshi M., Nomura T., Yokota T..
Zinc deficiency affects the levels of endogenous gibberellins in Zea mays L.
Plant and Cell Physiology.
(1997);
38
1087-1090
- 77
Steber C. M., McCourt P..
A role for brassinosteroids in germination in Arabidopsis.
.
Plant Physiology.
(2001);
125
763-769
- 78
Symons G. M., Reid J. B..
Hormone levels and response during de-etiolation in pea.
Planta.
(2003 a);
216
422-431
- 79
Symons G. M., Reid J. B..
Interactions between light and plant hormones during de-etiolation.
Journal of Plant Growth Regulation.
(2003 b);
22
3-14
- 80
Symons G. M., Reid J. B..
Brassinosteroids do not undergo long-distance transport in pea. Implications for the
regulation of endogenous brassinosteroid levels.
Plant Physiology.
(2004);
135
2196-2206
- 81
Symons G. M., Schultz L., Kerckhoffs L. H. J., Davies N. W., Gregory D., Reid J. B..
Uncoupling brassinosteroid levels and de-etiolation in pea.
Physiologia Plantarum.
(2002);
115
311-319
- 82
Szekeres M., Nemeth K., Koncz-Kalman Z., Mathur J., Kauschmann A., Altmann T., Redei G. P.,
Nagy F., Schell J., Koncz C..
Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell
elongation and de-etiolation in Arabidopsis.
.
Cell.
(1996);
85
171-182
- 83
Takahashi T., Gasch A., Nishizawa N., Chua N. H..
The DIMINUTO gene of Arabidopsis is involved in regulating cell elongation.
Genes & Development.
(1995);
9
97-107
- 84
Tanaka K., Nakamura Y., Asami T., Yoshida S., Matsuo T., Okamoto S..
Physiological roles of brassinosteroids in early growth of Arabidopsis: brassinosteroids have a synergistic relationship with gibberellin as well as auxin
in light-grown hypocotyl elongation.
Journal of Plant Growth Regulation.
(2003);
22
259-271
- 85
Thompson M. J., Meudt W. J., Mandava N. B., Dutky S. R., Lusby W. R., Spaulding D. W..
Synthesis of brassinosteroids and relationship of structure to plant growth promoting
effects.
Steroids.
(1982);
39
89-106
- 86
Tominaga R., Sakurai N., Kuraishi S..
Brassinolide-induced elongation of inner tissues of segments of squash (Cucurbita maxima Duch.) hypocotyls.
Plant and Cell Physiology.
(1994);
35
1103-1106
- 87
Vardhini B. V., Rao S. S. R..
Effect of brassinosteroids on growth, metabolite content and yield of Arachis hypogaea.
.
Phytochemistry.
(1998);
48
927-930
- 88
Wang T.-W., Cosgrove D. J., Arteca R. N..
Brassinosteroid stimulation of hypocotyl elongation and wall relaxation in pakchoi
(Brassica chinensis cv. Lei-Choi).
Plant Physiology.
(1993);
101
965-968
- 89
Wang Z. Y., Nakano T., Gendron J., He J. X., Chen M., Vafeados D., Yang Y. L., Fujioka S.,
Yoshida S., Asami T., Chory J..
Nuclear-localized BZR1 mediates brassinosteroid-induced growth and feedback suppression
of brassinosteroid biosynthesis.
Developmental Cell.
(2002);
2
505-513
- 90
Wehling M..
Specific, nongenomic actions of steroid hormones.
Annual Review of Physiology.
(1997);
59
365-393
- 91
Woeste K. E., Vogel J. P., Kieber J. J..
Factors regulating ethylene biosynthesis in etiolated Arabidopsis thaliana seedlings.
Physiologia Plantarum.
(1999);
105
478-484
- 92
Xu W., Purugganan M. M., Polisensky D. H., Antosiewicz D. M., Fry S. C., Braam J..
Arabidopsis TCH4, regulated by hormones and the environment, encodes a xyloglucan endotransglycosylase.
Plant Cell.
(1995);
7
1555-1567
- 93
Yamamuro C., Ihara Y., Wu X., Noguchi T., Fujioka S., Takatsuto S., Ashikari M., Kitano H.,
Matsuoka M..
Loss of function of a rice brassinosteroid insensitive1 homolog prevents internode elongation and bending of the lamina joint.
Plant Cell.
(2000);
12
1591-1605
- 94
Yin Y. H., Wang Z. Y., Mora-Garcia S., Li J. M., Yoshida S., Asami T., Chory J..
BES1 accumulates in the nucleus in response to brassinosteroids to regulate gene expression
and promote stem elongation.
Cell.
(2002);
109
181-191
- 95
Yokota T., Sato T., Takeuchi Y., Nomura T., Uno K., Watanabe T., Takatsuto S..
Roots and shoots of tomato produce 6-deoxo-28-norcathasterone, 6-deoxo-28-nortyphasterol
and 6-deoxo-28-norcastasterone, possible precursors of 28-norcastasterone.
Phytochemistry.
(2001);
58
233-238
- 96
Yopp J. H., Colclasure G. C., Mandava N..
Effects of brassin-complex on auxin and gibberellin mediated events in the morphogenesis
of the etiolated bean hypocotyl.
Physiologia Plantarum.
(1979);
46
247-254
- 97
Yopp J. H., Mandava N. B., Sasse J. M..
Brassinolide, a growth promoting steroidal lactone I. Activity in selected auxin bioassays.
Physiologia Plantarum.
(1981);
53
445-452
- 98
Zurek D. M., Clouse S. D..
Molecular cloning and characterization of a brassinosteroid-regulated gene from elongating
soybean (Glycine max L.) epicotyls.
Plant Physiology.
(1994);
104
161-170
- 99
Zurek D. M., Rayle D. L., McMorris T. C., Clouse S. D..
Investigation of gene expression, growth kinetics, and wall extensibility during brassinosteroid-regulated
stem elongation.
Plant Physiology.
(1994);
104
505-513
C. Müssig
Universität Potsdam - Genetik
Karl-Liebknecht-Straße 24 - 25, Haus 26
14476 Golm
Germany
Email: muessig@mpimp-golm.mpg.de
Editor: J. Raven