Int J Sports Med 2006; 27(2): 117-123
DOI: 10.1055/s-2005-837487
Training & Testing

© Georg Thieme Verlag KG Stuttgart · New York

Critical Velocity and Lactate Threshold in Young Swimmers

A. G. Toubekis1 , A. P. Tsami1 , S. P. Tokmakidis1
  • 1Democritus University of Thrace, Department of Physical Education and Sports Science, Thrace, Greece
Further Information

Publication History

Accepted after revision: December 6, 2004

Publication Date:
09 May 2005 (online)

Abtract

The purpose of the present study was to compare the critical swimming velocity (CV) in children, with the lactate threshold (LT) and the velocity corresponding to a blood lactate concentration of 4 mmol · l-1 (V4). Twenty swimmers (ten females and ten males, mean ± SD age: 12.9 ± 1.1 years, body weight: 51.2 ± 10.0 kg, height: 157.1 ± 9.7 cm) performed four repetitions of 200 m swimming with increasing intensity (80, 85, 90 and 100 % of their 200 m maximum velocity), interspersed with 15 minutes of passive rest. Blood lactate concentration was determined after each repetition. From the speed-lactate curve, the velocity corresponding to LT and V4 was calculated. In order to calculate CV, all swimmers were timed exerting maximum effort, on distances of 50, 100, 200 and 400 m. CV was expressed as the slope of the linear relationship of time versus distance and was calculated from combinations of four (CV4) three or two timed distances. Velocity on LT (1.079 ± 0.114 m · s-1) and V4 (1.106 ± 0.112 m · s-1) was comparable to CV4 (1.085 ± 0.121 m · s-1). CV calculated from a combination including distances of 50, 100 or 200 m were higher compared to LT (p < 0.05). V4 was higher compared to CV of 100 - 200 - 400, CV of 200 - 400, CV of 100 - 400 (p < 0.05). The CV calculated from distances of 50 and 100 m was significantly higher than all other velocities (p < 0.05). These results confirm that the critical velocity seems to be a valid, practical and time-saving, non-invasive alternative method which can be applied in the swimming pool by a coach for the evaluation of the endurance capacity of young swimmers. For practical reasons, combinations of less than four distances can be used (i.e. 50 - 400 m, or 50 - 100 - 400 m).

References

  • 1 Bar-Or O, Unnithan V, Illescas C. Physiologic considerations in age-group swimming. Miyashita M, Mutoh Y, Richardson A Medicine and Science in Aquatic Sports. Med Sport Sci. Vol. 39. Basel; Karger 1994: 199-205
  • 2 Beneke R, Boldt F, Richter T, Kress A, Leithauser R, Behn C. Measuring of blood lactate concentration in sports medicine comparison of three instruments.  Dt Z Sportsmed. 1994;  45 61-69
  • 3 Beneke R, Heck H, Schwarz V, Leithäuser R. Maximal lactate steady state during the second decade of age.  Med Sci Sports Exerc. 1996;  28 1474-1478
  • 4 Berthoin S, Baquet G, Dupont G, Blondel N, Mucci P. Critical velocity and anaerobic distance capacity in prepubertal children.  Can J Appl Physiol. 2003;  28 561-575
  • 5 Bland J M, Altman D G. Statistical methods for assessing agreement between two methods of clinical measurement.  Lancet. 1986;  1 307-310
  • 6 Bosquet L, Léger L, Legros P. Methods to determine aerobic endurance.  Sports Med. 2002;  32 675-700
  • 7 Brooks G. Anaerobic threshold: review of the concept and directions for future research.  Med Sci Sports Exerc. 1985;  17 22-31
  • 8 Dekerle J, Sidney M, Hespel J M, Pelayo P. Validity and reliability of critical speed, critical stroke rate, and anaerobic capacity in relation to front crawl swimming performances.  Int J Sports Med. 2002;  23 93-98
  • 9 Dekerle J, Lefevre T, Depretz S, Sidney M, Pelayo P. Stroke length drops from the maximal lactate steady state speed. Chatard J-C Biomechanics and Medicine in Swimming IX. Saint-Étienne; Publications de l' Université de Saint-Étienne 2003: 325-330
  • 10 Denadai B, Greco C, Teixeira M. Blood lactate response and critical speed in swimmers aged 10 - 12 years of different standards.  J Sport Sci. 2000;  18 779-784
  • 11 di Prampero P E. The concept of critical velocity: a brief analysis.  Eur J Appl Physiol. 1999;  80 162-164
  • 12 Fawkner S, Armstrong N. Oxygen uptake kinetic response to exercise in children.  Sports Med. 2003;  33 651-669
  • 13 Fernandes R, Vilas-Boas J P. Critical velocity as a criterion for estimating aerobic training pace in juvenile swimmers. Keskinen KL, Komi PV, Hollander AP Biomechanics and Medicine in Swimming VIII. Jyväskylä; Gummerus Printing 1999: 233-238
  • 14 Fernandes R, Guerra S, Lamares J, Vilas-Boas J. Critical velocity in swimming: three different methods for its determination. Avela J, Komi PV, Komulainen J Proceedings of the 5th Annual Congress of the European College of Sport Science. Jyväskylä; University of Jyväskylä 2000: 260
  • 15 MacLaren D, Coulson M. Critical swim speed can be used to determine changes in training status. Keskinen KL, Komi PV, Hollander AP Biomechanics and Medicine in Swimming VIII. Jyväskylä; Gummerus Printing 1999: 227-231
  • 16 Madsen Ø, Lohberg M. The lowdown on lactates.  Swimm Techn. 1987;  24 21-25
  • 17 Martin L, Whyte G. Comparison of critical swimming velocity and velocity at lactate threshold in elite triathletes.  Int J Sports Med. 2000;  21 366-368
  • 18 Mocellin R, Heusgen M, Gildein H. Anaerobic threshold and maximal steady-state blood lactate in prepubertal boys.  Eur J Appl Physiol. 1991;  62 56-60
  • 19 Monod H, Scherrer J. The work capacity of synergic muscle group.  Ergonomics. 1965;  8 329-338
  • 20 Olbrecht J, Madsen Ø, Mader A, Liesen H, Hollmann W. Relationship between swimming velocity and lactate concentration during continuous and intermittent training exercises.  Int J Sports Med. 1985;  6 74-77
  • 21 Pringle J, Jones A. Maximal lactate steady state, critical power and EMG during cycling.  Eur J Appl Physiol. 2002;  88 214-226
  • 22 Pyne D, Lee H, Swanwick K. Monitoring the lactate threshold in world-ranked swimmers.  Med Sci Sports Exerc. 2001;  33 291-297
  • 23 Rodríquez F A, Banquells M, Pons V, Drobnic F, Galilea P A. A comparative study of blood lactate analytic methods.  Int J Sports Med. 1992;  13 462-466
  • 24 Rodríquez F A, Moreno D, Saavedra J M. Is critical velocity a valid indicator of aerobic endurance in age-group and young swimmers?. Book of Abstracts. IXth World Symposium on Biomechanics and Medicine in Swimming. Saint-Étienne; Publications de l'Université de Saint-Étienne 2002: 154
  • 25 Rodríquez F A, Moreno D, Keskinen K. Validity of a two-distance simplified testing method for determining critical swimming velocity. Chatard J-C Biomechanics and Medicine in Swimming IX. Saint-Étienne; Publications de l' Université de Saint-Étienne 2003: 385-390
  • 26 Smith C, Jones A. The relationship between critical velocity, maximal lactate steady-state velocity and lactate turnpoint velocity in runners.  Eur J Appl Physiol. 2001;  85 19-26
  • 27 Smith D, Norris S, Hogg J. Performance evaluation of swimmers, scientific tools.  Sports Med. 2002;  32 539-554
  • 28 Takahashi S, Bone M, Spry S, Trappe S, Troup J. Differences in the anaerobic power of age group swimmers. MacLaren D, Reilly T, Lees A Biomechanics and Medicine in Swimming, Swimming Science VI. Liverpool; E & FN Spoon Publications 1992: 289-294
  • 29 Taylor S A. Comments: Comparison of critical swimming velocity and velocity at lactate threshold in elite triathletes.  Int J Sports Med. 2000;  21 366-368 re: Martin L, Whyte GP. Reply (Letter to the Editor).  Int J Sports Med. 2001;  22 81-82
  • 30 Tokmakidis S P, Léger L, Pilianidis T. Failure to obtain a unique threshold on the blood lactate concentration curve during exercise.  Eur J Appl Physiol. 1998;  77 333-342
  • 31 Toussaint H, Wakayoshi K, Hollander P, Ogita F. Simulated front crawl swimming performance related to critical speed and critical power.  Med Sci Sport Exerc. 1998;  30 144-151
  • 32 Troup J, Trappe S, Crickard G, D'Acquisto L, Barzdukas A. Aerobic: anaerobic contributions during various distances at common work: rest ratios. Maclaren D, Reilly T, Lees A Biomechanics and Medicine in Swimming VI. Liverpool; E & FN Spon Publications 1992: 279-283
  • 33 Wakayoshi K, Ikuta K, Yoshida T, Udo M, Moritani T, Mutoh Y, Miyashita M. Determination and validity of critical velocity as an index of swimming performance in the competitive swimmer.  Eur J Appl Physiol. 1992;  64 153-157
  • 34 Wakayoshi K, Yoshida T, Udo M, Kasai T, Moritani T, Mutoh Y, Miyashita M. A simple method for determining critical speed as swimming fatigue threshold in competitive swimmers.  Int J Sports Med. 1992;  13 367-371
  • 35 Wakayoshi K, Yoshida T, Udo M, Harada T, Moritani T, Mutoh Y, Miyashita M. Does critical swimming velocity represent exercise intensity at maximal lactate steady state?.  Eur J Appl Physiol. 1993;  66 90-95
  • 36 Williams J R, Armstrong N, Kirby B J. The 4 mM blood lactate level as an index of exercise performance in 11 - 13 year old children.  J Sports Sci. 1990;  8 139-147
  • 37 Williams J, Armstrong N. Relationship of maximal lactate steady state to performance at fixed blood lactate values in children.  Pediat Exerc Sci. 1991;  3 333-341
  • 38 Wright B, Smith D. A protocol for the determination of critical speed as an index of swimming endurance performance. Miyashita M, Mutoh Y, Richardson A Medicine and Science in Aquatic Sports. Med Sport Sci. Vol. 39. Basel; Karger 1994: 55-59
  • 39 Zamparo P, Capelli C, Cautero M, Di Nino A. Energy cost of front-crawl swimming at supra-maximal speeds and underwater torque in young swimmers.  Eur J Appl Physiol. 2000;  83 487-491

Savas P. Tokmakidis

Department of Physical Education and Sports Science
Democritus University of Thrace

7th Km Komotini-Xanthi

Komotini 69100

Greece

Phone: + 253139649

Fax: + 253 13 96 83

Email: stokmaki@phyed.duth.gr