Cent Eur Neurosurg 2005; 66(4): 207-212
DOI: 10.1055/s-2005-836670
Original Article

© Georg Thieme Verlag Stuttgart · New York

Quantitative Determination of Hyaluronan Content in Cerebral Aneurysms by Digital Densitometry

Quantitative Bestimmung von Hyaluronan in zerebralen Aneurysmen mit digitaler DensitometrieÁ. Klekner1 , S. Felszeghy2 , R. Tammi3 , M. Tammi3 , G. Csécsei1 , L. Módis2
  • 1Department of Neurosurgery, University of Debrecen, Hungary
  • 2Department of Anatomy, Histology and Embryology, Medical and Health Science Center (MHSC),Tissues and Neurobiology Research Group of the Hungarian Academy of Sciences and University of Debrecen, Hungary
  • 3Department of Anatomy, University of Kuopio, Finland
Further Information

Publication History

Publication Date:
29 November 2005 (online)


Object: Hyaluronan (HA) is a highly hydrated macromolecule; it is one of the essential components of the extracellular matrix (ECM) of the arteries and plays an important role in maintaining the biomechanical features of blood vessels. Although the potential contribution of HA in aneurysms of different vessels has been studied intensively, no data are available about the alteration of the HA content in the extracellular matrix of intracranial aneurysms. The aim of the study was to determine the hyaluronan content in the wall of human cerebral arteries. Methods: A biotinylated aggrecan fragment that binds specifically to HA was used to stain samples from cerebral aneurysms (n = 11) to compare the HA content to non-aneurysmal arteries of patients who had intracranial aneurysm (n = 11), and to histologically normal arteries of patients who had expired from non-vascular diseases (n = 14). Digital microscopic densitometry was used for the quantitative analysis of the hyaluronan content in these samples. Results: The highest level (169.5 ± 7.9) was detected in aneurysms, while the HA-level of non-aneurysmal vessels was lower (130.2 ± 16.8). Both vessel groups contained significantly higher HA than the normal cerebral arteries (32.9 ± 2.1). Conclusions: Results suggest that an elevated hyaluronan level in the extracellular matrix may affect the cerebral arterial wall architecture. It is reasonable to suppose that the increased hyaluronan content creates a viscoelastic ECM which might improve the biomechanical resistance of the thinned vessel wall.


Hyaluronan (HA) ist ein Makromolekül, das eine der essenziellen Komponenten der extrazellulären Matrix (ECM) der Arterien darstellt, und es spielt eine wichtige Rolle in der Aufrechterhaltung der biomechanischen Eigenschaften von Blutgefäßen. Obwohl der mögliche Beitrag von HA bei Aneurysmen verschiedener Blutgefäße intensiv untersucht wurde, existieren keine Daten über die Veränderung des HA-Gehaltes in der extrazellulären Matrix intrakranieller Aneurysmen. Das Ziel dieser Untersuchung ist es, den Hyaluronangehalt der Wand menschlicher zerebraler Arterien zu untersuchen. Methoden: Ein biotiniliertes Aggrecan-Fragment, das sich spezifisch an HA bindet, wurde benutzt, um Proben zerebraler Aneurysmen (n = 11) zu färben, mit dem Ziel, den HA-Gehalt zu vergleichen mit jenen von nicht-aneurysmatischen Arterien von Patienten, die intrakranielle Aneurysmenträger waren (n = 11). Außerdem wurde ein Vergleich angestellt zu histologisch normalen Arterien von Patienten, die aufgrund nicht-vaskulärer Erkrankungen verstarben (n = 14). Für die quantitative Analyse des Hyaluronangehaltes in diesen Proben wurde die digitale mikroskopische Densitometrie angewendet. Ergebnisse: Das höchste Gehalt (169,5 ± 7,9) wurde in Aneurysmen festgestellt, während der HA-Gehalt von nicht-aneurysmatischen Gefäßen niedriger war (130,2 ± 16,8). Beide Gruppen von Blutgefäßen enthielten deutlich höhere HA-Mengen als normale zerebrale Arterien (32,9 ± 2,1). Schlussfolgerung: Die Ergebnisse legen die Hypothese nahe, dass ein erhöhter Hyaluronangehalt in der extrazellulären Matrix die Architektur der zerebralen Arterienwand beeinflusst. Es erscheint vernünftig, anzunehmen, dass der erhöhte Hyaluronangehalt eine viskoelastische extrazelluläre Matrix schafft, die den biomechanischen Widerstand der ausgedünnten Gefäßwand verbessert.


  • 1 Berenson G S, Radhakrishnamurthy B, Srinivasan S R, Vijayagopal P, Dalferes E R, Sharma C. Recent advances in molecular pathology: carbohydrate-protein macromolecules and arterial wall integrity - a role in atherogenesis.  Exp Mol Pathol. 1984;  41 267-287
  • 2 Brown J A. The role of hyaluronic acid in wound healing's proliferative phase.  J Wound Care. 2004;  13 48-51
  • 3 Burke A P, Jarvelainen H, Kolodgie F D, Goel A, Wight T N, Virmani R. Superficial pseudoaneurysms: clinicopathologic aspects and involvement of extracellular matrix proteoglycans.  Mod Pathol. 2004;  17 482-488
  • 4 Cattell M A, Hasleton P S, Anderson J C. Glycosaminoglycan content is increased in dissecting aneurysms of human thoracic aorta.  Clin Chim Acta. 1994;  226 29-46
  • 5 de Paepe A, Landegem W van, de Keyser F, de Reuck J. Association of multiple intracranial aneurysms and collagen type III deficiency.  Clin Neurol Neurosurg. 1988;  90 53-56
  • 6 Evanko S P, Johnson P Y, Braun K R, Underhill C B, Dudhia J, Wight T N. Platelet-derived growth factor stimulates the formation of versican-hyaluronan aggregates and pericellular matrix expansion in arterial smooth muscle cells.  Arch Biochem Biophys. 2001;  394 29-38
  • 7 Fang H. A comparison of blood vessels of the brain and peripheral blood vessels. In: Wright IS, Millikan CH (eds). Cerebral Vascular Diseases. Grune and Stratton, New York 1958; 17-22
  • 8 Farb A, Kolodgie F D, Hwang J Y, Burke A P, Tefera K, Weber D K, Wight T N, Virmani R. Extracellular matrix changes in stented human coronary arteries.  Circulation. 2004;  110 940-947
  • 9 Fraser J R, Laurent T C, Laurent U B. Hyaluronan: its nature, distribution, functions and turnover.  J Intern Med. 1997;  242 27-33
  • 10 Gaetani P, Tartara F, Tancioni F, Rodriguez y Baena R, Casari E, Alfano M, Grazioli V. Deficiency of total collagen content and of deoxypyridinoline in intracranial aneurysm walls.  FEBS Lett. 1997;  404 303-306
  • 11 Gaetani P, Tartara F, Grazioli V, Tancioni F, Infuso L, Rodriguez y Baena R. Collagen cross-linkage, elastolytic and collagenolytic activities in cerebral aneurysms: a preliminary investigation.  Life Sci. 1998;  63 285-292
  • 12 Gutierrez P S, Reis M M, Higuchi M L, Aiello V D, Stolf N AG, Lopes E A. Distribution of hyaluronan and dermatan/chondroitin sulfate proteoglycans in human aortic dissection.  Connect Tissue Res. 1998;  37 151-161
  • 13 Hsu S, Jamieson A M, Blackwell J. Viscoelastic studies of extracellular matrix interactions in a model native collagen gel system.  Biorheology. 1994;  31 21-36
  • 14 Isacke C M, Yarwood H. The hyaluronan receptor, CD44.  Int J Biochem Cell Biol. 2002;  34 718-721
  • 15 Kassam A, Horowitz M, Chang Y F, Peters D. Altered arterial homeostasis and cerebral aneurysms: a review of the literature and justification for a search of molecular biomarkers.  Neurosurgery. 2004;  54 1199-1212
  • 16 Krex D, Schackert H K, Schakert G. Genesis of cerebral aneurysms - an update.  Acta Neurochir (Wien). 2001;  143 429-449
  • 17 Ostergaard J R. Risk factors in intracranial saccular aneurysms. Aspects on the formation and rupture of aneurysms and development of cerebral vasospasm.  Acta Neurol Scand. 1989;  80 81-98
  • 18 Ripellino J A, Klinger M M, Margolis R U, Margolis R K. The hyaluronic acid binding region as a specific probe for the localization of hyaluronic acid in tissue sections. Application to chick embryo and rat brain.  J Histochem Cytochem. 1985;  33 1060-1066
  • 19 Rooney P, Kumar S. Inverse relationship between hyaluronan and collagens in development and angiogenesis.  Differentiation. 1993;  54 1-9
  • 20 Ross R. Atherosclerosis: a defense mechanism gone away.  Am J Pathol. 1993;  14 987-1001
  • 21 Sainte-Marie G. A paraffin embedding technique for studies employing immuno-fluorescence.  J Histochem Cytochem. 1962;  10 250-256
  • 22 Schievink W I, Link M J, Piepgras D G, Spetzler R F. Intracranial aneurysm surgery in Ehlers-Danlos syndrome Type IV.  Neurosurgery. 2002;  51 607-611
  • 23 Schönherr E, Jarvelainen H T, Sandell L J, Wight T N. Platelet derived growth factor and transforming growth factor-β1 differentially affect the synthesis of biglycan and decorin by monkey smooth muscle cells.  J Biol Chem. 1991;  266 17640-17647
  • 24 Scott J E, Cummings C, Brass A, Chen Y. Secondary and tertiary structures of hyaluronan in aqueous solution, investigated by rotary shadowing-electron microscopy and computer simulation. Hyaluronan is a very efficient network-forming polymer.  Biochem J. 1991;  15 699-705
  • 25 Tammi R, Ripellino J A, Margolis R U, Maibach H I, Tammi M. Hyaluronate accumulation in human epidermis treated with retinoic acid in skin organ culture.  J Invest Dermatol. 1989;  92 326-332
  • 26 Tammi R, Rönkkö S, Ågren U, Tammi M. Distribution of hyaluronan in bull reproductive organs.  J Histochem Cytochem. 1994;  42 1479-1486
  • 27 Tammi R, Maccallum P, Huscall V C, Pienimaki J P, Hyttinen M, Tammi M. Hyaluronan bound to CD44 on keratinocytes is displaced by hyaluronan decasaccharides and not hexasaccharides.  J Biol Chem. 1998;  273 28878-28888
  • 28 Toole B P. Hyaluronan in morphogenesis.  Semin Cell Dev Biol. 2001;  12 79-87
  • 29 Tuckett F, Morris-Kay G. Alcian blue staining of glycosaminoglycans in embryonic material: effect of different fixatives.  Histochem J. 1988;  20 174-182
  • 30 van der Berg J S, Limburg M, Pals G, Arwert F, Westerveld A, Hennekam R C, Albrecht K W. Some patients with intracranial aneurysms have a reduced type III/type I collagen ratio. A case control study.  Neurology. 1997;  49 1546-1551
  • 31 Weigel P H, Hascall V C, Tammi M. Hyaluronan synthases.  J Biol Chem. 1997;  272 13997-14000
  • 32 Wight T N. Vessel proteoglycans and thrombogenesis.  Prog Hemost Thromb. 1980;  5 1-39
  • 33 Wight T N. Cell biology of arterial proteoglycans.  Arteriosclerosis. 1989;  9 1-20
  • 34 Wight T N, Merrilees M J. Proteoglycans in atherosclerosis and restenosis: key roles for versican.  Circ Res. 2004;  94 1158-1167
  • 35 Yanagishita M. Function of the proteoglycans in the extracellular matrix.  Acta Pathol Jpn. 1993;  43 283-293
  • 36 Youmans J R. (ed) .Neurological Surgery. 3rd ed., W. B. Saunders, Philadelphia 1990; 1644
  • 37 Zákány R, Bakó É, Felszeghy S, Holló K, Balázs M, Bárdos H, Gergely P, Módis L. Okadaic acid induced inhibition of protein phosphatase 2A enhances chondrogenesis in chicken limb bud micromass cell cultures.  Anat Embryol. 2001;  203 23-34

Á. KleknerMD, PhD 

Department of Neurosurgery · MHSC · University of Debrecen

Nagyerdei krt. 98

4012 Debrecen


Fax: + 36/52 41 94 18

Email: aklekner@yahoo.com