Viszeralchirurgie 2005; 40(2): 79-85
DOI: 10.1055/s-2005-836397
Aktuelle Chirurgie

© Georg Thieme Verlag Stuttgart · New York

Anti-Angiogenese als Therapieprinzip in der gastroenterologischen Onkologie

Vascular Targeting Agents as Therapeutics for Gastrointestinal TumoursD. Strumberg1 , P. R. Ritter2
  • 1Medizinische Klinik III, Hämatologie/Internistische Onkologie, Marienhospital-Universitätsklinik Herne
  • 2Medizinische Klinik I, Hämatologie/Internistische Onkologie, St. Josef-Hospital-Universitätsklinik Bochum
Further Information

Publication History

Publication Date:
21 April 2005 (online)

Zusammenfassung

Der Prozeß der tumorassoziierten Angiogenese ist von zentraler Bedeutung für das lokale Tumorwachstum, seine Invasion und die nachfolgende Metastasierung. Die sehr komplexen Vorgänge beruhen auf vielen Einzelschritten, die sowohl von der lokalen Balance zwischen positiven und negativen Regulationsfaktoren, aber auch von den Interaktionen des Karzinoms mit seiner Gefäßversorgung und der umgebenden extrazellulären Matrix abhängig sind. Eine Vielzahl von angiogenen Faktoren wurde in den letzten Jahren identifiziert, charakterisiert und schließlich als therapeutische Zielstruktur definiert. Hierzu zählen u. a. Wachstumsfaktoren, die an die Rezeptor-Tyrosinkinasen binden. Zu den besonders wirksamen proangiogenen Wachstumsfaktoren zählt der vaskuläre endotheliale Wachstumsfaktor (VEGF). VEGF stimuliert hochspezifisch die Proliferation von vaskulären Endothelzellen. Die meisten antiangiogenen Substanzen modulieren die Aktivität endothelialer Zellen oder beeinflussen proangiogene Wachstumsfaktoren bzw. deren Rezeptor-Tyrosinkinasen. Insbesondere stellt die Blockade des VEGF/VEGF-Rezeptorsystems einen wichtigen und neuen Ansatz in der Therapie gastrointestinaler Tumoren dar. Bevacizumab (Avastin®), der erste zugelassene Angiogenese-Inhibitor, ist ein humanisierter monoklonaler Antikörper, der VEGF bindet und damit die Aktivierung des VEGF-Rezeptors verhindert. Ein weiteres antiangiogenes Wirkprinzip besteht in der pharmakologischen Hemmung des VEGF-Rezeptors im Bereich seiner Tyrosinkinase-Funktion. Einige dieser oral applizierbaren Angiogeneseinhibitoren werden bereits in großen Phase-III-Studien in der Erst- und Zweitlinientherapie geprüft, nachdem sie erfolgreich das Phase-I-Programm durchlaufen haben. Zusammenfassend konnte die Anti-Angiogenese als therapeutisches Konzept in der Tumortherapie validiert werden.

Abstract

Neovascularization is a prerequisite for progressive growth of solid tumors and their metastases. This highly complex process is tightly regulated by a large number of proangiogenic and antiangiogenic factors and by further interactions of the tumor with blood vessels and extracellular matrix. Recently, numerous proangiogenic factors had been identified and characterized as molecular targets for pharmacological inhibition. Most of these proangiogenic factors represent growth factors, which specifically interact with and thereby activating receptor tyrosine kinases. One of the most important regulators of angiogenesis is the vascular endothelial growth factor (VEGF). VEGF stimulates endothelial cell proliferation. Most antiangiogenic drugs directly interact with vascular endothelial cells or interfere with proangiogenic growth factors or its receptor tyrosine kinases. Especially the blockade of the VRGF/VEGF-receptor organization represents an important novel strategy in the treatment of gastrointestinal malignancies. Bevacizumab (Avastin®) is a humanised monoclonal VEGF antibody preventing activation of the VEGF-receptor and has been recently approved for the first and second line treatment of colorectal cancer in combination with chemotherapy. Other drugs interact with the VEGF-receptor by inhibiting the receptor tyrosine kinase. A number of orally applicable inhibitors of the receptor tyrosine kinase are currently been tested in phase III trials. Taken together, these studies further validated antiangiogenesis as a promising therapeutic strategy in the treatment of cancer.

Literatur

  • 1 Reinmuth N, Parikh A A, Ahmad S A, Liu W, Stoeltzing O, Fan F, Takeda A, Akagi M, Ellis L M. Biology of angiogenesis in tumors of the gastrointestinal tract.  Microsc Res Tech. 2003;  60 199-207
  • 2 Folkman J. Tumor angiogenesis: therapeutic implications.  N Engl J Med. 1971;  285 1182-1186
  • 3 Folkman J. How is blood vessel growth regulated in normal and neoplastic tissue? G.H.A. Clowes memorial Award lecture.  Cancer Res. 1986;  46 467-473
  • 4 Folkman J. What is the evidence that tumors are angiogenesis dependent?.  J Natl Cancer Inst. 1990;  82 4-6
  • 5 Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease.  Nat Med. 1995;  1 27-31
  • 6 Liotta L A, Kohn E C. The microenvironment of the tumour-host interface.  Nature. 2001;  411 375-379
  • 7 Carmeliet P, Jain R K. Angiogenesis in cancer and other diseases.  Nature. 2000;  407 249-257
  • 8 Tischer E, Mitchell R, Hartman T, Silva M, Gospodarowicz D, Fiddes J C, Abraham J A. The human gene for vascular endothelial growth factor. Multiple protein forms are encoded through alternative exon splicing.  J Biol Chem. 1991;  266 11947-11954
  • 9 Korc M. Pathways for aberrant angiogenesis in pancreatic cancer.  Mol Cancer. 2003;  2 8
  • 10 Nor J E, Christensen J, Mooney D J, Polverini P J. Vascular endothelial growth factor (VEGF)-mediated angiogenesis is associated with enhanced endothelial cell survival and induction of Bcl-2 expression.  Am J Pathol. 1999;  154 375-384
  • 11 Leung D W, Cachianes G, Kuang W J, Goeddel D V, Ferrara N. Vascular endothelial growth factor is a secreted angiogenic mitogen.  Science. 1989;  246 1306-1309
  • 12 Ku D D, Zaleski J K, Liu S, Brock T A. Vascular endothelial growth factor induces EDRF-dependent relaxation in coronary arteries.  Am J Physiol. 1993;  265 H586-H592
  • 13 Pepper M S, Ferrara N, Orci L, Montesano R. Vascular endothelial growth factor (VEGF) induces plasminogen activators and plasminogen activator inhibitor-1 in microvascular endothelial cells.  Biochem Biophys Res Commun. 1991;  181 902-906
  • 14 Ellis L M, Takahashi Y, Liu W, Shaheen R M. Vascular endothelial growth factor in human colon cancer: biology and therapeutic implications.  Oncologist. 2000;  5 (Suppl 1) 11-15
  • 15 Ferrer F A, Miller L J, Lindquist R, Kowalczyk P, Laudone V P, Albertsen P C, Kreutzer D L. Expression of vascular endothelial growth factor receptors in human prostate cancer.  Urology. 1999;  54 567-572
  • 16 Takahashi Y, Tucker S L, Kitadai Y, Koura A N, Bucana C D, Cleary K R, Ellis L M. Vessel counts and expression of vascular endothelial growth factor as prognostic factors in node-negative colon cancer.  Arch Surg. 1997;  132 541-546
  • 17 Wong M P, Cheung N, Yuen S T, Leung S Y, Chung L P. Vascular endothelial growth factor is up-regulated in the early pre-malignant stage of colorectal tumour progression.  Int J Cancer. 1999;  81 845-850
  • 18 Takahashi Y, Kitadai Y, Bucana C D, Cleary K R, Ellis L M. Expression of vascular endothelial growth factor and its receptor, KDR, correlates with vascularity, metastasis, and proliferation of human colon cancer.  Cancer Res. 1995;  55 3964-3968
  • 19 Kang S M, Maeda K, Onoda N, Chung Y S, Nakata B, Nishiguchi Y, Sowa M. Combined analysis of p53 and vascular endothelial growth factor expression in colorectal carcinoma for determination of tumor vascularity and liver metastasis.  Int J Cancer. 1997;  74 502-507
  • 20 Ishigami S I, Arii S, Furutani M, Niwano M, Harada T, Mizumoto M, Mori A, Onodera H, Imamura M. Predictive value of vascular endothelial growth factor (VEGF) in metastasis and prognosis of human colorectal cancer.  Br J Cancer. 1998;  78 1379-1384
  • 21 Takahashi Y, Bucana C D, Akagi Y, Liu W, Cleary K R, Mai M, Ellis L M. Significance of platelet-derived endothelial cell growth factor in the angiogenesis of human gastric cancer.  Clin Cancer Res. 1998;  4 429-434
  • 22 Konno S, Takebayashi Y, Aiba M, Akiyama S, Ogawa K. Clinicopathological and prognostic significance of thymidine phosphorylase and proliferating cell nuclear antigen in gastric carcinoma.  Cancer Lett. 2001;  166 103-111
  • 23 Kimura H, Konishi K, Nukui T, Kaji M, Maeda K, Yabushita K, Tsuji M, Miwa A. Prognostic significance of expression of thymidine phosphorylase and vascular endothelial growth factor in human gastric carcinoma.  J Surg Oncol. 2001;  76 31-36
  • 24 Maeda K, Chung Y S, Ogawa Y, Takatsuka S, Kang S M, Ogawa M, Sawada T, Sowa M. Prognostic value of vascular endothelial growth factor expression in gastric carcinoma.  Cancer. 1996;  77 858-863
  • 25 Karayiannakis A J, Bolanaki H, Syrigos K N, Asimakopoulos B, Polychronidis A, Anagnostoulis S, Simopoulos C. Serum vascular endothelial growth factor levels in pancreatic cancer patients correlate with advanced and metastatic disease and poor prognosis.  Cancer Lett. 2003;  194 119-124
  • 26 Liu C D, Tilch L, Kwan D, McFadden D W. Vascular endothelial growth factor is increased in ascites from metastatic pancreatic cancer.  J Surg Res. 2002;  102 31-34
  • 27 Niedergethmann M, Hildenbrand R, Wostbrock B, Hartel M, Sturm J W, Richter A, Post S. High expression of vascular endothelial growth factor predicts early recurrence and poor prognosis after curative resection for ductal adenocarcinoma of the pancreas.  Pancreas. 2002;  25 122-129
  • 28 Ellis L M, Takahashi Y, Fenoglio C J, Cleary K R, Bucana C D, Evans D B. Vessel counts and vascular endothelial growth factor expression in pancreatic adenocarcinoma.  Eur J Cancer. 1998;  34 337-340
  • 29 Ikeda N, Adachi M, Taki T, Huang C, Hashida H, Takabayashi A, Sho M, Nakajima Y, Kanehiro H, Hisanaga M, Nakano H, Miyake M. Prognostic significance of angiogenesis in human pancreatic cancer.  Br J Cancer. 1999;  79 1553-1563
  • 30 Heldin C H, Westermark B. Mechanism of action and in vivo role of platelet-derived growth factor.  Physiol Rev. 1999;  79 1283-1316
  • 31 Cao R, Brakenhielm E, Li X, Pietras K, Widenfalk J, Ostman A, Eriksson U, Cao Y. Angiogenesis stimulated by PDGF-CC, a novel member in the PDGF family, involves activation of PDGFR-alphaalpha and -alphabeta receptors.  Faseb J. 2002;  16 1575-1583
  • 32 Li X, Eriksson U. Novel PDGF family members: PDGF-C and PDGF-D.  Cytokine Growth Factor Rev. 2003;  14 91-98
  • 33 Bergsten E, Uutela M, Li X, Pietras K, Ostman A, Heldin C H, Alitalo K, Eriksson U. PDGF-D is a specific, protease-activated ligand for the PDGF beta-receptor.  Nat Cell Biol. 2001;  3 512-516
  • 34 LaRochelle W J, Jeffers M, McDonald W F, Chillakuru R A, Giese N A, Lokker N A, Sullivan C, Boldog F L, Yang M, Vernet C, Burgess C E, Fernandes E, Deegler L L, Rittman B, Shimkets J, Shimkets R A, Rothberg J M, Lichenstein H S. PDGF-D, a new protease-activated growth factor.  Nat Cell Biol. 2001;  3 517-521
  • 35 Ostman A, Heldin C H. Involvement of platelet-derived growth factor in disease: development of specific antagonists.  Adv Cancer Res. 2001;  80 1-38
  • 36 Ishikawa F, Miyazono K, Hellman U, Drexler H, Wernstedt C, Hagiwara K, Usuki K, Takaku F, Risau W, Heldin C H. Identification of angiogenic activity and the cloning and expression of platelet-derived endothelial cell growth factor.  Nature. 1989;  338 557-562
  • 37 Takahashi Y, Bucana C D, Liu W, Yoneda J, Kitadai Y, Cleary K R, Ellis L M. Platelet-derived endothelial cell growth factor in human colon cancer angiogenesis: role of infiltrating cells.  J Natl Cancer Inst. 1996;  88 1146-1151
  • 38 Kikuyama S, Inada T, Shimizu K, Miyakita M. Thymidine phosphorylase expression in gastric cancer in association with proliferative activity and angiogenesis.  Anticancer Res. 2000;  20 2081-2086
  • 39 Fujimoto K, Hosotani R, Wada M, Lee J U, Koshiba T, Miyamoto Y, Tsuji S, Nakajima S, Doi R, Imamura M. Expression of two angiogenic factors, vascular endothelial growth factor and platelet-derived endothelial cell growth factor in human pancreatic cancer, and its relationship to angiogenesis.  Eur J Cancer. 1998;  34 1439-1447
  • 40 Auguste P, Javerzat S, Bikfalvi A. Regulation of vascular development by fibroblast growth factors.  Cell Tissue Res. 2003;  314 157-166
  • 41 Montesano R, Vassalli J D, Baird A, Guillemin R, Orci L. Basic fibroblast growth factor induces angiogenesis in vitro.  Proc Natl Acad Sci U S A. 1986;  83 7297-7301
  • 42 Johnson D E, Lu J, Chen H, Werner S, Williams L T. The human fibroblast growth factor receptor genes: a common structural arrangement underlies the mechanisms for generating receptor forms that differ in their third immunoglobulin domain.  Mol Cell Biol. 1991;  11 4627-4634
  • 43 Nakamura T, Mochizuki Y, Kanetake H, Kanda S. Signals via FGF receptor 2 regulate migration of endothelial cells.  Biochem Biophys Res Commun. 2001;  289 801-806
  • 44 Javerzat S, Auguste P, Bikfalvi A. The role of fibroblast growth factors in vascular development.  Trends Mol Med. 2002;  8 483-489
  • 45 Arbeit J M, Olson D C, Hanahan D. Upregulation of fibroblast growth factors and their receptors during multi-stage epidermal carcinogenesis in K14-HPV16 transgenic mice.  Oncogene. 1996;  13 1847-1857
  • 46 Kwan C P, Venkataraman G, Shriver Z, Raman R, Liu D, Qi Y, Varticovski L, Sasisekharan R. Probing fibroblast growth factor dimerization and role of heparin-like glycosaminoglycans in modulating dimerization and signaling.  J Biol Chem. 2001;  276 23 421-23 429
  • 47 Schlessinger J, Plotnikov A N, Ibrahimi O A, Eliseenkova A V, Yeh B K, Yayon A, Linhardt R J, Mohammadi M. Crystal structure of a ternary FGF-FGFR-heparin complex reveals a dual role for heparin in FGFR binding and dimerization.  Mol Cell. 2000;  6 743-750
  • 48 Nguyen M, Watanabe H, Budson A E, Richie J P, Hayes D F, Folkman J. Elevated levels of an angiogenic peptide, basic fibroblast growth factor, in the urine of patients with a wide spectrum of cancers.  J Natl Cancer Inst. 1994;  86 356-361
  • 49 Nguyen M, Watanabe H, Budson A E, Richie J P, Folkman J. Elevated levels of the angiogenic peptide basic fibroblast growth factor in urine of bladder cancer patients.  J Natl Cancer Inst. 1993;  85 241-242
  • 50 Landriscina M, Cassano A, Ratto C, Longo R, Ippoliti M, Palazzotti B, Crucitti F, Barone C. Quantitative analysis of basic fibroblast growth factor and vascular endothelial growth factor in human colorectal cancer.  Br J Cancer. 1998;  78 765-770
  • 51 Grotowski M, Piechota W. [Receptors of selected cytokines and angiokine bFGF in patients with colorectal cancer (a preliminary study)].  Pol Merkuriusz Lek. 2001;  11 398-401
  • 52 George M L, Tutton M G, Abulafi A M, Eccles S A, Swift R I. Plasma basic fibroblast growth factor levels in colorectal cancer: a clinically useful assay?.  Clin Exp Metastasis. 2002;  19 735-738
  • 53 Dirix L Y, Vermeulen P B, Hubens G, Benoy I, Martin M, De Pooter C, Van Oosterom A T. Serum basic fibroblast growth factor and vascular endothelial growth factor and tumour growth kinetics in advanced colorectal cancer.  Ann Oncol. 1996;  7 843-848
  • 54 Tanimoto H, Yoshida K, Yokozaki H, Yasui W, Nakayama H, Ito H, Ohama K, Tahara E. Expression of basic fibroblast growth factor in human gastric carcinomas.  Virchows Arch B Cell Pathol Incl Mol Pathol. 1991;  61 263-267
  • 55 Noda M, Hattori T, Kimura T, Naitoh H, Kodama T, Kashima K, Pignatelli M. Expression of fibroblast growth factor 2 mRNA in early and advanced gastric cancer.  Acta Oncol. 1997;  36 695-700
  • 56 Ueki T, Koji T, Tamiya S, Nakane P K, Tsuneyoshi M. Expression of basic fibroblast growth factor and fibroblast growth factor receptor in advanced gastric carcinoma.  J Pathol. 1995;  177 353-361
  • 57 Yoshikawa T, Tsuburaya A, Kobayashi O, Sairenji M, Motohashi H, Yanoma S, Noguchi Y. Plasma concentrations of VEGF and bFGF in patients with gastric carcinoma.  Cancer Lett. 2000;  153 7-12
  • 58 Anzai H, Kitadai Y, Bucana C D, Sanchez R, Omoto R, Fidler I J. Expression of metastasis-related genes in surgical specimens of human gastric cancer can predict disease recurrence.  Eur J Cancer. 1998;  34 558-565
  • 59 Estival A, Durand S, Clerc P, Louvel D, Vaysse N, Valdiguie P, Clemente F. Pancreatic cancer cell regulation by lipids and by basic fibroblast growth factor expression.  Cancer Detect Prev. 1997;  21 546-552
  • 60 Ghaneh P, Kawesha A, Evans J D, Neoptolemos J P. Molecular prognostic markers in pancreatic cancer.  J Hepatobiliary Pancreat Surg. 2002;  9 1-11
  • 61 Fujioka S, Yoshida K, Yanagisawa S, Kawakami M, Aoki T, Yamazaki Y. Angiogenesis in pancreatic carcinoma: thymidine phosphorylase expression in stromal cells and intratumoral microvessel density as independent predictors of overall and relapse-free survival.  Cancer. 2001;  92 1788-1797
  • 62 Ohta T, Yamamoto M, Numata M, Iseki S, Tsukioka Y, Miyashita T, Kayahara M, Nagakawa T, Miyazaki I, Nishikawa K, Yoshitake Y. Expression of basic fibroblast growth factor and its receptor in human pancreatic carcinomas.  Br J Cancer. 1995;  72 824-831
  • 63 Holmgren L, O'Reilly M, Folkman J. Dormancy of micro metastases; balanced proliferation and apoptosis in the presence of angiogenesis suppression.  Nat Med. 1995;  1 149-153
  • 64 Hurwitz H. Integrating the anti-VEGF-A humanized monoclonal antibody bevacizumab with chemotherapy in advanced colorectal cancer.  Clin Colorectal Cancer. 2004;  4 (Suppl 2) S62-S68
  • 65 Fernando N H, Hurwitz H I. Inhibition of vascular endothelial growth factor in the treatment of colorectal cancer.  Semin Oncol. 2003;  30 (Suppl 6) 39-50
  • 66 Hurwitz H, Fehrenbacher L, Novotny W, Cartwright T, Hainsworth J, Heim W, Berlin J, Baron A, Griffing S, Holmgren E, Ferrara N, Fyfe G, Rogers B, Ross R, Kabbinavar F. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer.  N Engl J Med. 2004;  350 2335-2342
  • 67 Goldberg R M, Sargent D J, Morton R F, Fuchs C S, Ramanathan R K, Williamson S K, Findlay B P, Pitot H C, Alberts S R. A randomized controlled trial of fluorouracil plus leucovorin, irinotecan, and oxaliplatin combinations in patients with previously untreated metastatic colorectal cancer.  J Clin Oncol. 2004;  22 23-30
  • 68 Saltz L B, Cox J V, Blanke C, Rosen L S, Fehrenbacher L, Moore M J, Maroun J A, Ackland S P, Locker P K, Pirotta N, Elfring G L, Miller L L. Irinotecan Study Group . Irinotecan plus fluorouracil and leucovorin for metastatic colorectal cancer.  N Engl J Med. 2000;  343 905-914
  • 69 Rugo H S. Bevacizumab in the treatment of breast cancer: rationale and current data.  Oncologist. 2004;  9 (Suppl 1) 43-49
  • 70 Yang J C, Haworth L, Sherry R M, Hwu P, Schwartzentruber D J, Topalian S L, Steinberg S M, Chen H X, Rosenberg S A. A randomized trial of bevacizumab, an anti-vascular endothelial growth factor antibody, for metastatic renal cancer.  N Engl J Med. 2003;  349 427-434
  • 71 Herbst R S, Kim E S, Harari P M. IMC-C225, an anti-epidermal growth factor receptor monoclonal antibody, for treatment of head and neck cancer.  Expert Opin Biol Ther. 2001;  1 719-732
  • 72 Ciardiello F, Tortora G. A novel approach in the treatment of cancer: targeting the epidermal growth factor receptor.  Clin Cancer Res. 2001;  7 2958-2970
  • 73 Arteaga C L. The epidermal growth factor receptor: from mutant oncogene in nonhuman cancers to therapeutic target in human neoplasia.  J Clin Oncol. 2001;  19 (Suppl) 32S-40S
  • 74 Mendelsohn J. Targeting the epidermal growth factor receptor for cancer therapy.  J Clin Oncol. 2002;  20 (Suppl) 1S-13S
  • 75 Ferreira C G, Epping M, Kruyt F A, Giaccone G. Apoptosis: target of cancer therapy.  Clin Cancer Res. 2002;  8 2024-2034
  • 76 Tamm I, Schriever F, Dorken B. Apoptosis: implications of basic research for clinical oncology.  Lancet Oncol. 2001;  2 33-42
  • 77 Ciardiello F. An update of new targets for cancer treatment: receptor-mediated signals.  Ann Oncol. 2002;  13 (Suppl 4) 29-38
  • 78 Petit A M, Rak J, Hung M C, Rockwell P, Goldstein N, Fendly B, Kerbel R S. Neutralizing antibodies against epidermal growth factor and ErbB-2/neu receptor tyrosine kinases down-regulate vascular endothelial growth factor production by tumor cells in vitro and in vivo: angiogenic implications for signal transduction therapy of solid tumors.  Am J Pathol. 1997;  151 1523-1530
  • 79 Perrotte P, Matsumoto T, Inoue K, Kuniyasu H, Eve B Y, Hicklin D J, Radinsky R, Dinney C P. Anti-epidermal growth factor receptor antibody C225 inhibits angiogenesis in human transitional cell carcinoma growing orthotopically in nude mice.  Clin Cancer Res. 1999;  5 257-265
  • 80 Cunningham D, Humblet Y, Siena S, Khayat D, Bleiberg H, Santoro A, Bets D, Mueser M, Harstrick A, Verslype C, Chau I, Van Cutsem E. Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer.  N Engl J Med. 2004;  351 337-345
  • 81 Saltz L, Rubin M, Hochster H. et al . Cetuximab (IMC-C225) plus irinotecan (CPT-11) is active in CPT-11-refractory colorectal cancer (CRC) that expresses epidermal growth factor receptor (EGFR).  Proc Am Soc Clin Oncol. 2001;  20 Abs. Nr. 7
  • 82 Saltz L B, Meropol N J, Loehrer P J, Needle M N, Kopit J, Mayer R J. Phase II trial of cetuximab in patients with refractory colorectal cancer that expresses the epidermal growth factor receptor.  J Clin Oncol. 2004;  22 1201-1208
  • 83 Rosenberg A, Loehrer P J, Needle M. et al . Erbitux (IMC-C225) plus weekly irinotecan (CPT-11), fluorouracil (5FU) and leucovorin (LV) in colorectal cancer (CRC) that expresses the epidermal growth factor receptor (EGFr).  Proc Am Soc Clin Oncol. 2002;  21 Abs. Nr. 536
  • 84 Lutz M, Schoffski P, Folprecht G. et al . A phase I/II study of cetuximab (C225) plus irinotecan (CPT-11) and 24 hinfusional 5FU/folinic acid (FA) in the treatment of colorectal cancer (MCRC) expressing the epidermal growth factor receptor (EGFR).  Ann Oncol. 2002;  (Suppl 5) 73 (Abs. 265 PD)
  • 85 Raoul J-L, van Laethem J-L, Mitry E. et al . Phase II study of cetuximab combined with FOLFIRI (bi-weekly irinotecan plus infusional 5-FU and folinic acid) in patients with metastatic epidermal growth factor receptor-expressing colorectal cancer.  Eur J Cancer Supplements. 2003;  1 Abs. Nr. 231
  • 86 Wilhelm S M, Carter C, Tang L, Wilkie D, McNabola A, Rong H, Chen C, Zhang X, Vincent P, McHugh M, Cao Y, Shujath J, Gawlak S, Eveleigh D, Rowley B, Liu L, Adnane L, Lynch M, Auclair D, Taylor I, Gedrich R, Voznesensky A, Riedl B, Post L E, Bollag G, Trail P A. BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis.  Cancer Res. 2004;  64 7099-7109
  • 87 Motzer R, Rini B, Michaelson M, Redman B, Hudes G, Wilding G, Figlin R, Zhu J, Kim S, Baum C. SU011248, a novel tyrosine kinase inhibitor, shows antitumor activity in second-line therapy for patients with metastatic renal cell carcinoma: Results of a phase 2 trial. ASCO 40th Annual Meeting Proceedings. ASCO, New Orleans, LA 2004; 22: 382s
  • 88 Demetri G, Desai J, Fletcher J, Morgan J, Fletcher C, Kazanovicz A, Van Den Abbeele A, Baum C, Maki R, Heinrich M. SU011248, a multi-targeted tyrosine kinase inhibitor, can overcome imatinib resistance caused by diverse genomic mechanisms in patients with metastatic gastrointestinal stromal tumor. ASCO 40th Annual Meeting Proceedings. ASCO, New Orleans, LA 2004; 22: 195s
  • 89 Ratain M, Flaherty K, Stadler W M, O'Dwyer P, Kaye S, Xiong H, Patnaik A, Gore M, Lee R, Eisen T. Preliminary antitumor activity of BAY 43-9006 in metastatic renal carcinoma and other advanced solid tumors in a phase II randomized discontinuation trial (RDT). ASCO 40th Annual Meeting Proceedings. ASCO, New Orleans, LA 2004; 22: 382s
  • 90 Abou-Alfa G K, Schwartz L, Ricci S, Amadori D, Santoro A, Figer A, De Greve J, Douilard J, Moscovici M, Schwartz B, Saltz L B. Phase II study of Bay 43-9006 in patients with advanced hepatocellular carcinoma (HCC). AACR-NCI-WORTC International Conference on Molecular Targets and Cancer Therapeutics. Geneva, Switzerland 2004
  • 91 Flaherty K, Brose M, Schuchter L, Tuveson D, Lee R, Schwartz B, Lathia C, Weber B, O'Dwyer P. Phase I/II trial of BAY 43-9006, carboplatin (C), and paclitaxel (P) demonstrates preliminary antitumor activity in the expansion cohort of patients with metastatic melanoma. ASCO 40th Annual Meeting Proceedings. ASCO, New Orleans, LA 2004; 22: 711s
  • 92 Flaherty K T. New molecular targets in melanoma.  Curr Opin Oncol. 2004;  16 150-154
  • 93 Ahmad T, Eisen T. Kinase inhibition with BAY 43-9006 in renal cell carcinoma.  Clin Cancer Res. 2004;  10 6388S-6392S
  • 94 Ahmad T, Marais R, Pyle L, James M, Schwartz B, Gore M, Eisen T. BAY 43-9006 in patients with advanced melanoma: The Royal Marsden experience. ASCO 40th Annual Meeting Proceedings. ASCO, New Orleans, LA 2004; 22: 711s
  • 95 Zimpfer-Rechner C, Hofmann U, Figl R, Becker J C, Trefzer U, Keller I, Hauschild A, Schadendorf D. Randomized phase II study of weekly paclitaxel versus paclitaxel and carboplatin as second-line therapy in disseminated melanoma: a multicentre trial of the Dermatologic Co-operative Oncology Group (DeCOG).  Melanoma Res. 2003;  13 531-536
  • 96 Hodi F S, Soiffer R J, Clark J, Finkelstein D M, Haluska F G. Phase II study of paclitaxel and carboplatin for malignant melanoma.  Am J Clin Oncol. 2002;  25 283-286
  • 97 Brower V. Evidence of efficacy: researchers investigating markers for angiogenesis inhibitors.  J Natl Cancer Inst. 2003;  95 1425-1427
  • 98 Mross K, Fuxius S, Drevs J. Serial measurements of pharmacokinetics, DCE-MRI, blood flow, PET and biomarkers in serum/plasma - what is a useful tool in clinical studies of anti-angiogenic drugs?.  Int J Clin Pharmacol Ther. 2002;  40 573-574
  • 99 Mross K. Anti-angiogenesis therapy:concepts and importance of dosing schedules in clinical trials.  Drug Resist Updat. 2000;  3 223-235
  • 100 Morgan B, Thomas A L, Drevs J, Hennig J, Buchert M, Jivan A, Horsfield M A, Mross K, Ball H A, Lee L, Mietlowski W, Fuxuis S, Unger C, O'Byrne K, Henry A, Cherryman G R, Laurent D, Dugan M, Marme D, Steward W P. Dynamic contrast-enhanced magnetic resonance imaging as a biomarker for the pharmacological response of PTK787/ZK 222584, an inhibitor of the vascular endothelial growth factor receptor tyrosine kinases, in patients with advanced colorectal cancer and liver metastases: results from two phase I studies.  J Clin Oncol. 2003;  21 3955-3964

Priv.-Doz. Dr. med. Dirk Strumberg

Medizinische Klinik III · Hämatologie/Internistische Onkologie · Marienhospital-Universitätsklinik Herne

Hölkeskampring 40

44621 Herne

Email: dirk.strumberg@uni-essen.de

    >