Zusammenfassung
Die aerosolische Administration von Peptidomimetika könnte in der Zukunft bei der
Behandlung einer Vielzahl pulmonaler und systemischer Erkrankungen eine wichtige Rolle
spielen. Insbesondere ergeben sich durch die neuen Verfahren der rationalen Substanzentwicklung
Möglichkeiten, spezifische Pharmaka zu entwerfen, die durch Transportproteine effizient
durch das Epithel transportiert werden. Von den zwei derzeitig bekannten Pharmakatransportern
PEPT1 und PEPT2, die aus menschlichem Gewebe kloniert worden sind, konnte der hochaffine
PEPT2-Transporter in der Lunge nachgewiesen werden. Es handelt sich um ein Membranprotein
mit 12 transmembranären Domänen, welches durch Kopplung an einen zelleinwärts gerichteten
elektrochemischen Protonengradienten Substrate transportiert. In den menschlichen
Atemwegen konnte die Expression von PEPT2 im Bronchialepithel und in Pneumozyten Typ
2 gefunden werden. Aufnahmestudien zeigen, dass sowohl Peptide sowie auch Peptidomimetika
wie Antibiotika, antivirale Substanzen und Zytostatika durch PEPT2 transportiert werden.
PEPT2 ist ebenso verantwortlich für den Transport der Delta-Aminolävulinsäure, die
in der photodynamischen Therapie und Diagnostik von pulmonalen Neoplasien verwendet
wird. Ausgehend von neuesten Erkenntnissen im Bereich Substratbindung- und -Transport
rückt PEPT2 als Transportsystem zukünftiger, mittels rationaler Substanzentwicklung
generierter Atemwegstherapeutika und Prodrugs in das Blickfeld therapeutischer Überlegungen.
Abstract
The aerosolic administration of peptidomimetic drugs with a peptide backbone may play
a crucial role in the future treatment of diseases. Especially rational drug design
offers an option to synthesize new drugs that are carried by specific drug transporters.
Out of the presently identified transporter proteins PEPT1 and PEPT2, the high-affinity
transporter PEPT2 is found in the respiratory tract. The transporter possess 12 membrane
spanning domains and catalyses an electrogenic uphill drug transport using a transmembrane
electrochemical proton gradient. PEPT2 is expressed in the bronchial epithelium and
in alveolar type II pneumocytes in human airways. Kinetic studies demonstrated that
peptidomimetic compounds including antibiotic, antiviral and antineoplastic drugs
are carried by PEPT2. The transporter also carries delta-aminolevulinic acid into
the airways. This molecule can be used for the diagnostics of pulmonary neoplasms
and for photodynamic therapy. Using the recently published data on minimal structural
requirements for PEPT2-substrates, rational drug design may lead to a new generation
of respiratory drugs and prodrugs, which are delivered to the airways via the molecular
mechanisms of the PEPT2 transport system.
Literatur
1
Groneberg D A.
Expression, Lokalisation und funktionelle Aspekte des Peptidtransporters PEPT2 im
gesunden Atemtrakt und bei Mukoviszidose.
Pneumologie.
2003;
57
104-105
2
Groneberg D A.
Chronischer Husten: Assoziationen zwischen Klinik und nervalen Einflüssen.
Pneumologie.
2003;
57
473-474
3
Groneberg D A, Witt C, Wagner U. et al .
Fundamentals of pulmonary drug delivery.
Respir Med.
2003;
97
382-387
4
Cushing I E, Miller W F.
Nebulization therapy.
Clin Anesth.
1965;
1
169-218
5
Bates D V, Kaneko K, Henderson J A. et al .
Recent experimental and clinical experience in studies of regional lung function.
Scand J Respir Dis Suppl.
1966;
62
15-29
6
Bertalanffy F D.
Respiratory tissue: structure, histophysiology, cytodynamics. I. Review and basic
cytomorphology.
Int Rev Cytol.
1964;
16
233-328
7
Wagner Jr H N, Tow D E, Lopez-Majano V. et al .
Factors influencing regional pulmonary blood in man.
Scand J Respir Dis Suppl.
1966;
62
59-72
8
Miller W F.
Aerosol therapy in acute and chronic respiratory disease.
Arch Intern Med.
1973;
131
148-155
9
Corkery K.
Inhalable drugs for systemic therapy.
Respir Care.
2000;
45
831-835
10
Newhouse M T, Corkery K J.
Aerosols for systemic delivery of macromolecules.
Respir Care Clin N Am.
2001;
7
261-275
11
Harsch I A, Hahn E G, Konturek P C.
Syringe, pen, inhaler - the evolution of insulin therapy.
Med Sci Monit.
2001;
7
833-836
12
Cole C H.
Inhaled glucocorticoid therapy in infants at risk for neonatal chronic lung disease.
J Asthma.
2000;
37
533-543
13
O'Riordan T G.
Optimizing delivery of inhaled corticosteroids: matching drugs with devices.
J Aerosol Med.
2002;
15
245-250
14
Kelly H W.
Comparative potency and clinical efficacy of inhaled corticosteroids.
Respir Care Clin N Am.
1999;
5
537-553
15
Fink J, Dhand R.
Bronchodilator resuscitation in the emergency department. Part 2 of 2: dosing strategies.
Respir Care.
2000;
45
497-512
16
Rau Jr J L.
Recent developments in respiratory care pharmacology.
J Perianesth Nurs.
1998;
13
359-369
17
Rodrigo G J, Rodrigo C.
Aerosol and inhaled therapy in treatment of acute adult airway obstruction in the
emergency department.
Respir Care Clin N Am.
2001;
7
215-231
18
O'Riordan T, Faris M.
Inhaled antimicrobial therapy.
Respir Care Clin N Am.
1999;
5
617-631
19
Smaldone G C, Palmer L B.
Aerosolized antibiotics: current and future.
Respir Care.
2000;
45
667-675
20
Boll M, Herget M, Wagener M. et al .
Daniel. Expression cloning and functional characterization of the kidney cortex high-affinity
proton-coupled peptide transporter.
Proc Natl Acad Sci USA.
1996;
93
284-289
21
Groneberg D A, Nickolaus M, Springer J. et al .
Localization of the peptide transporter PEPT2 in the lung: implications for pulmonary
oligopeptide uptake.
Am J Pathol.
2001;
158
707-714
22
Groneberg D A, Eynott P R, Doring F. et al .
Distribution and function of the peptide transporter PEPT2 in normal and cystic fibrosis
human lung.
Thorax.
2002;
57
55-60
23
Boll M, Markovich D, Weber M W. et al .
Expression cloning of a cDNA from rabbit small intestine related to proton-coupled
transport of peptides, β-lactam antibiotics and ACE-inhibitors.
Pflugers Arch.
1994;
429
146-149
24
Fei Y J, Kanai Y, Nussberger S. et al .
Expression cloning of a mammalian proton-coupled oligopeptide transporter.
Nature.
1994;
368
563-566
25
Yamashita F, Kim K J, Lee V H.
Gly-L-Phe transport and metabolism across primary cultured rabbit tracheal epithelial
cell monolayers.
Pharm Res.
1997;
14
238-240
26
Yamashita V, Kim K J, Lee V H.
Dipeptide uptake and transport characteristics in rabbit tracheal epithelial cell
layers cultured at an air interface.
Pharm Res.
1998;
15
979-983
27
Groneberg D A, Nickolaus M, Springer J. et al .
Pulmonary uptake of oligopeptides: Expression and functional aspects of PEPT2 in airway
tissue.
Am J Respir Crit Care Med.
1999;
159
A38
28
Doring F, Michel T, Rosel A. et al .
Expression of the mammalian renal peptide transporter PEPT2 in the yeast Pichia pastoris
and applications of the yeast system for functional analysis.
Mol Membr Biol.
1998;
15
79-88
29
Ogihara H, Saito H, Shin B C. et al .
Immuno-localization of H+/peptide cotransporter in rat digestive tract.
Biochem Biophys Res Commun.
1996;
220
848-852
30
Groneberg D A, Doring F, Daniel H. et al .
Distribution of the oligopeptide transporter PEPT2 in normal human lung.
Am J Respir Crit Care Med.
2000;
161
A150
31
Groneberg D A, Dinh Q T, Eynott F. et al .
Peptide transport mechanisms in cystic fibrosis and normal human lung.
Allergy.
2001;
56
A19
32
Groneberg D A, Eynott P R, Oates T. et al .
Expression of MUC5AC and MUC5B mucins in normal and cystic fibrosis lung.
Respir Med.
2002;
96
81-86
33
Groneberg D A, Eynott P R, Lim S. et al .
Expression of respiratory mucins in fatal status asthmaticus and mild asthma.
Histopathology.
2002;
40
367-373
34
Chung K F, Caramori G, Groneberg D A.
Airway obstruction in chronic obstructive pulmonary disease.
N Engl J Med.
2004;
351
1459-1461
35
Groneberg D A, Wagner U, Chung K F.
Mucus and fatal asthma.
Am J Med.
2003;
116
66-67
36
Groneberg D A, Peiser D, Dinh Q T. et al .
Distribution of respiratory mucin proteins in human nasal mucosa.
Laryngoscope.
2003;
113
520-524
37
Paulsen I T, Skurray R A.
The POT family of transport proteins.
Trends Biochem Sci.
1994;
19
404
38
Daniel H, Rubio-Aliaga I.
An update on renal peptide transporters.
Am J Physiol Renal Physiol.
2003;
284
F885-892
39
Thwaites D T, Kennedy D J, Raldua D. et al .
H/dipeptide absorption across the human intestinal epithelium is controlled indirectly
via a functional Na/H exchanger.
Gastroenterology.
2002;
122
1322-1333
40
Dudeja P K, Hafez N, Tyagi S. et al .
Expression of the Na+/H+ and Cl-/HCO-3 exchanger isoforms in proximal and distal human
airways.
Am J Physiol.
1999;
276
L971-978
41
Al-Bazzaz F J, Hafez N, Tyagi S. et al .
Detection of Cl-HCO3- and Na+-H+ exchangers in human airways epithelium.
Jop.
2001;
2
285-290
42
Irie M, Terada T, Sawada K. et al .
Recognition and transport characteristics of nonpeptidic compounds by basolateral
peptide transporter in Caco-2 cells.
J Pharmacol Exp Ther.
2001;
298
711-717
43
Terada T, Sawada K, Saito H. et al .
Functional characteristics of basolateral peptide transporter in the human intestinal
cell line Caco-2.
Am J Physiol.
1999;
276
G1435-1441
44
Terada T, Sawada K, Ito T. et al .
Functional expression of novel peptide transporter in renal basolateral membranes.
Am J Physiol Renal Physiol.
2000;
279
F851-857
45
Groneberg D A, Doring F, Nickolaus M. et al .
Renal assimilation of short chain peptides: visualization of tubular peptide uptake.
Pharm Res.
2002;
19
1209-1214
46
Shen H, Smith D E, Yang T. et al .
Localization of PEPT1 and PEPT2 proton-coupled oligopeptide transporter mRNA and protein
in rat kidney.
Am J Physiol.
1999;
276
F658-665
47
Groneberg D A, Rubio-Aliaga I, Nickolaus M. et al .
Direct visualization of peptide uptake activity in the central nervous system of the
rat.
Neurosci Lett.
2004;
364
32-36
48
Berger U V, Hediger M A.
Distribution of peptide transporter PEPT2 mRNA in the rat nervous system.
Anat Embryol (Berl).
1999;
199
439-449
49
Groneberg D A, Doring F, Nickolaus M. et al .
Expression of PEPT2 peptide transporter mRNA and protein in glial cells of rat dorsal
root ganglia.
Neurosci Lett.
2001;
304
181-184
50
Groneberg D A, Doring F, Theis S. et al .
Peptide transport in the mammary gland: expression and distribution of PEPT2 mRNA
and protein.
Am J Physiol Endocrinol Metab.
2002;
282
E1172-1179
51
Groneberg D A, Doring F, Eynott P R. et al .
Intestinal peptide transport: ex vivo uptake studies and localization of peptide carrier
PEPT1.
Am J Physiol Gastrointest Liver Physiol.
2001;
281
G697-704
52
Smith D E, Pavlova A, Berger U V. et al .
Tubular localization and tissue distribution of peptide transporters in rat kidney.
Pharm Res.
1998;
15
1244-1249
53
Knutter I, Rubio-Aliaga I, Boll M. et al .
H+/peptide cotransport in the human bile duct epithelium cell line SK-ChA-1.
Am J Physiol Gastrointest Liver Physiol.
2002;
283
G222-229
54
Liu W, Liang R, Ramamoorthy S. et al .
Molecular cloning of PEPT 2, a new member of the H+/peptide cotransporter family,
from human kidney.
Biochim Biophys Acta.
1995;
1235
461-466
55
Ramamoorthy S, Liu W, Ma Y Y. et al .
Proton/peptide cotransporter (PEPT 2) from human kidney: functional characterization
and chromosomal localization.
Biochim Biophys Acta.
1995;
1240
1-4
56
Saito H, Terada T, Okuda M. et al .
Molecular cloning and tissue distribution of rat peptide transporter PEPT2.
Biochim Biophys Acta.
1996;
1280
173-177
57
Rubio-Aliaga I, Boll M, Daniel H.
Cloning and characterization of the gene encoding the mouse peptide transporter PEPT2.
Biochem Biophys Res Commun.
2000;
276
734-741
58
Shen H, Smith D E, Keep R F. et al .
Targeted disruption of the PEPT2 gene markedly reduces dipeptide uptake in choroid
plexus.
J Biol Chem.
2003;
278
4786-4791
59
Rubio-Aliaga I, Frey I, Boll M. et al .
Targeted disruption of the peptide transporter Pept2 gene in mice defines its physiological
role in the kidney.
Mol Cell Biol.
2003;
23
3247-3252
60
Brandsch M, Brandsch C, Ganapathy M E. et al .
Influence of proton and essential histidyl residues on the transport kinetics of the
H+/peptide cotransport systems in intestine (PEPT 1) and kidney (PEPT 2).
Biochim Biophys Acta.
1997;
1324
251-262
61
Fei Y J, Liu W, Prasad P D. et al .
Identification of the histidyl residue obligatory for the catalytic activity of the
human H+/peptide cotransporters PEPT1 and PEPT2.
Biochemistry.
1997;
36
452-460
62
Terada T, Saito H, Mukai M. et al .
Identification of the histidine residues involved in substrate recognition by a rat
H+/peptide cotransporter, PEPT1.
FEBS Lett.
1996;
394
196-200
63
Doring F, Dorn D, Bachfischer U. et al .
Functional analysis of a chimeric mammalian peptide transporter derived from the intestinal
and renal isoforms.
J Physiol.
1996;
497 (Pt 3)
773-779
64
Fei Y J, Liu J C, Fujita T. et al .
Identification of a potential substrate binding domain in the mammalian peptide transporters
PEPT1 and PEPT2 using PEPT1-PEPT2 and PEPT2-PEPT1 chimeras.
Biochem Biophys Res Commun.
1998;
246
39-44
65
Terada T, Saito H, Sawada K. et al .
Inui. N-terminal halves of rat H+/peptide transporters are responsible for their substrate
recognition.
Pharm Res.
2000;
17
15-20
66
Doring F, Martini C, Walter J. et al .
Importance of a small N-terminal region in mammalian peptide transporters for substrate
affinity and function.
J Membr Biol.
2002;
186
55-62
67
Theis S, Hartrodt B, Kottra G. et al .
Defining minimal structural features in substrates of the H(+)/peptide cotransporter
PEPT2 using novel amino acid and dipeptide derivatives.
Mol Pharmacol.
2002;
61
214-221
68
Daniel H.
Nutrient transporter function studied in heterologous expression systems.
Ann N Y Acad Sci.
2000;
915
184-192
69
Koch C, Hoiby N.
Pathogenesis of cystic fibrosis.
Lancet.
1993;
341
1065-1069
70
Rosenstein B J, Zeitlin P L.
Prognosis in cystic fibrosis.
Curr Opin Pulm Med.
1995;
1
444-449
71
Ramsey B W.
Management of pulmonary disease in patients with cystic fibrosis.
N Engl J Med.
1996;
335
179-188
72
Honeybourne D.
Antibiotic penetration into lung tissues.
Thorax.
1994;
49
104-106
73
Baldwin D R, Honeybourne D, Wise R.
Pulmonary disposition of antimicrobial agents: in vivo observations and clinical relevance.
Antimicrob Agents Chemother.
1992;
36
1176-1180
74
Baldwin D R, Honeybourne D, Wise R.
Pulmonary disposition of antimicrobial agents: methodological considerations.
Antimicrob Agents Chemother.
1992;
36
1171-1175
75
Wise R, Andrews J, Imbimbo B P. et al .
The penetration of rufloxacin into sites of potential infection in the respiratory
tract.
J Antimicrob Chemother.
1993;
32
861-866
76
Honeybourne D, Baldwin D R.
The site concentrations of antimicrobial agents in the lung.
J Antimicrob Chemother.
1992;
30
249-260
77
Honeybourne D, Andrews J M, Cunningham B. et al .
The concentrations of clinafloxacin in alveolar macrophages, epithelial lining fluid,
bronchial mucosa and serum after administration of single 200 mg oral doses to patients
undergoing fibre-optic bronchoscopy.
J Antimicrob Chemother.
1999;
43
153-155
78
Soman A, Honeybourne D, Andrews J. et al .
Concentrations of moxifloxacin in serum and pulmonary compartments following a single
400 mg oral dose in patients undergoing fibre-optic bronchoscopy.
J Antimicrob Chemother.
1999;
44
835-838
79
Andrews J M, Honeybourne D, Brenwald N P. et al .
Concentrations of trovafloxacin in bronchial mucosa, epithelial lining fluid, alveolar
macrophages and serum after administration of single or multiple oral doses to patients
undergoing fibre-optic bronchoscopy.
J Antimicrob Chemother.
1997;
39
797-802
80
Cook P J, Andrews J M, Wise R. et al .
Distribution of cefdinir, a third generation cephalosporin antibiotic, in serum and
pulmonary compartments.
J Antimicrob Chemother.
1996;
37
331-339
81
Cook P J, Andrews J M, Woodcock J. et al .
Concentration of amoxycillin and clavulanate in lung compartments in adults without
pulmonary infection.
Thorax.
1994;
49
1134-1138
82
Hodson M E, Penketh A R, Batten J C.
Aerosol carbenicillin and gentamicin treatment of Pseudomonas aeruginosa infection
in patients with cystic fibrosis.
Lancet.
1981;
2
1137-1139
83
Bressolle F, de la Coussaye J E, Ayoub R. et al .
Endotracheal and aerosol administrations of ceftazidime in patients with nosocomial
pneumonia: pharmacokinetics and absolute bioavailability.
Antimicrob Agents Chemother.
1992;
36
1404-1411
84
Nolan G, Moivor P, Levison H. et al .
Antibiotic prophylaxis in cystic fibrosis: inhaled cephaloridine as an adjunct to
oral cloxacillin.
J Pediatr.
1982;
101
626-630
85
Rubio-Aliaga I, Daniel H.
Mammalian peptide transporters as targets for drug delivery.
Trends Pharmacol Sci.
2002;
23
434-440
86
Ganapathy M E, Prasad P D, Mackenzie B. et al .
Interaction of anionic cephalosporins with the intestinal and renal peptide transporters
PEPT1 and PEPT2.
Biochim Biophys Acta.
1997;
1324
296-308
87
Terada T, Saito H, Mukai M. et al .
Recognition of beta-lactam antibiotics by rat peptide transporters, PEPT1 and PEPT2,
in LLC-PK1 cells.
Am J Physiol.
1997;
273
F706-711
88
Gonzalez D E, Covitz K M, Sadee W. et al .
An oligopeptide transporter is expressed at high levels in the pancreatic carcinoma
cell lines AsPc-1 and Capan-2.
Cancer Res.
1998;
58
519-525
89
Nakanishi T, Tamai I, Sai Y. et al .
Carrier-mediated transport of oligopeptides in the human fibrosarcoma cell line HT1080.
Cancer Res.
1997;
57
4118-4122
90
Nakanishi T, Tamai I, Takaki A. et al .
Cancer cell-targeted drug delivery utilizing oligopeptide transport activity.
Int J Cancer.
2000;
88
274-280
91
Nielsen C U, Brodin B.
Di/tri-peptide transporters as drug delivery targets: regulation of transport under
physiological and patho-physiological conditions.
Curr Drug Targets.
2003;
4
373-388
92
Rowe P M.
Photodynamic therapy begins to shine.
Lancet.
1998;
351
1496
93
Dougherty T J, Gomer C J, Henderson B W. et al .
Photodynamic therapy.
J Natl Cancer Inst.
1998;
90
889-905
94
Peng Q, Warloe T, Berg K. et al .
5-Aminolevulinic acid-based photodynamic therapy. Clinical research and future challenges.
Cancer.
1997;
79
2282-2308
95
Peng Q, Moan J, Ma L W. et al .
Uptake, localization, and photodynamic effect of meso-tetra(hydroxyphenyl)porphine
and its corresponding chlorin in normal and tumor tissues of mice bearing mammary
carcinoma.
Cancer Res.
1995;
55
2620-2626
96
Maier A, Tomaselli F, Matzi V. et al .
Comparison of 5-aminolaevulinic acid and porphyrin photosensitization for photodynamic
therapy of malignant bronchial stenosis: a clinical pilot study.
Lasers Surg Med.
2002;
30
12-17
97
Ost D.
Photodynamic therapy in lung cancer. A review.
Methods Mol Med.
2003;
75
507-526
98
Unger M.
Endobronchial therapy of neoplasms.
Chest Surg Clin N Am.
2003;
13
129-147
99
Chien J W, Johnson J L.
Viral pneumonias. Infection in the immunocompromised host.
Postgrad Med.
2000;
107
67-70, 73 - 74, 77 - 80
100
Groneberg D A, Hilgenfeld R, Zabel P.
Molecular mechanisms of severe acute respiratory syndrome (SARS).
Respir Res.
2005;
6
8
101
Morin M J, Warner A, Fields B N.
Reovirus infection in rat lungs as a model to study the pathogenesis of viral pneumonia.
J Virol.
1996;
70
541-548
102
Becker S, Soukup J, Yankaskas J R.
Respiratory syncytial virus infection of human primary nasal and bronchial epithelial
cell cultures and bronchoalveolar macrophages.
Am J Respir Cell Mol Biol.
1992;
6
369-374
103
Groneberg D A, Zhang L, Welte T. et al .
Severe acute respiratory syndrome: global initiatives for disease diagnosis.
QJM.
2003;
96
845-852
104
Groneberg D A, Poutanen S, Low D E. et al .
Treatment and vaccines for severe acute respiratory syndrome (SARS).
Lancet Infect Dis.
2005;
in Press
105
Ganapathy M E, Huang W, Wang H. et al .
Valacyclovir: a substrate for the intestinal and renal peptide transporters PEPT1
and PEPT2.
Biochem Biophys Res Commun.
1998;
246
470-475
106
Sugawara M, Huang W, Fei Y J. et al .
Transport of valganciclovir, a ganciclovir prodrug, via peptide transporters PEPT1
and PEPT2.
J Pharm Sci.
2000;
89
781-789
107
Han H, de Vrueh R L, Rhie J K. et al .
5’-Amino acid esters of antiviral nucleosides, acyclovir, and AZT are absorbed by
the intestinal PEPT1 peptide transporter.
Pharm Res.
1998;
15
1154-1159
108
Groneberg D A, Welker P, Fischer T C. et al .
Down-regulation of vasoactive intestinal polypeptide receptor expression in atopic
dermatitis.
J Allergy Clin Immunol.
2003;
111
1099-1105
109
Jacob P, Rossmann H, Lamprecht G. et al .
Down-regulated in adenoma mediates apical Cl-/HCO3- exchange in rabbit, rat, and human
duodenum.
Gastroenterology.
2002;
122
709-724
110
Groneberg D A, Hartmann P, Dinh Q T. et al .
Expression and distribution of vasoactive intestinal polypeptide receptor VPAC(2)
mRNA in human airways.
Lab Invest.
2001;
81
749-755
111
Peiser C, Springer J, Groneberg D A. et al .
Leptin receptor expression in nodose ganglion cells projecting to the rat gastric
fundus.
Neurosci Lett.
2002;
320
41-44
112
Heppt W, Peiser C, Cryer A. et al .
Innervation of human nasal mucosa in environmentally triggered hyperreflectoric rhinitis.
J Occup Environ Med.
2002;
44
924-929
113
Groneberg D A, Heppt W, Cryer A. et al .
Toxic rhinitis-induced changes of human nasal mucosa innervation.
Toxicol Pathol.
2003;
31
326-331
114
Eynott P R, Paavolainen N, Groneberg D A. et al .
Role of nitric oxide in chronic allergen-induced airway cell proliferation and inflammation.
J Pharmacol Exp Ther.
2003;
304
22-29
115
Groneberg D A, Niimi A, Dinh Q T. et al .
Increased expression of transient receptor potential vanilloid-1 in airway nerves
of chronic cough.
Am J Respir Crit Care Med.
2004;
170
1276-1280
116
Springer J, Amadesi S, Trevisani M. et al .
Effects of alpha calcitonin gene-related peptide in human bronchial smooth muscle
and pulmonary artery.
Regul Pept.
2004;
118
127-134
Priv.-Doz. Dr. med. David A. Groneberg
Allergie-Centrum-Charité, Charité-Universitätsmedizin Berlin · Freie Universität Berlin
und Humboldt-Universität zu Berlin
Augustenburger Platz 1-OR-1
13353 Berlin, Germany
Email: david.groneberg@charite.de