References
<A NAME="RG39004ST-1A">1a</A> First report:
Julia M.
Paris J.-M.
Tetrahedron Lett.
1973,
4833
<A NAME="RG39004ST-1B">1b</A> Stereochemical investigations:
Kocienski PJ.
Lythgoe B.
Ruston S.
J. Chem. Soc., Perkin Trans. 1
1978,
829
<A NAME="RG39004ST-1C">1c</A>
Kocienski PJ.
Lythgoe B.
Waterhouse I.
J. Chem. Soc., Perkin Trans. 1
1980,
1045
<A NAME="RG39004ST-2A">2a</A> A cis-selective variant of the (Marc) Julia-Lythgoe olefination was reported, too:
Bremmer J.
Julia M.
Launay M.
Stacino JP.
Tetrahedron Lett.
1982,
23:
3265
<A NAME="RG39004ST-2B">2b</A>
Julia M.
Lauron H.
Stacino JP.
Verpeaux JN.
Jeannin Y.
Dromzee Y.
Tetrahedron
1986,
42:
2475
<A NAME="RG39004ST-2C">2c</A> Select applications:
Julia M.
Stacino JP.
Tetrahedron
1986,
42:
2469
<A NAME="RG39004ST-2D">2d</A>
Cuvigny T.
Dupenhoat CH.
Julia M.
Tetrahedron
1987,
43:
859
<A NAME="RG39004ST-2E">2e</A>
Holmes AB.
Pooley GR.
Tetrahedron
1992,
48:
7775
<A NAME="RG39004ST-3A">3a</A> First report:
Baudin JB.
Hareau G.
Julia SA.
Ruel O.
Tetrahedron Lett.
1991,
32:
1175
<A NAME="RG39004ST-3B">3b</A> Stereochemical studies:
Baudin JB.
Hareau G.
Julia SA.
Ruel O.
Bull. Soc. Chim. Fr.
1993,
130:
336
<A NAME="RG39004ST-3C">3c</A>
Baudin JB.
Hareau G.
Julia SA.
Lorne R.
Ruel O.
Bull. Soc. Chim. Fr.
1993,
130:
856
<A NAME="RG39004ST-3D">3d</A> For an exception see:
Bellingham R.
Jarowicki K.
Kocienski P.
Martin V.
Synthesis
1996,
285 : A 71:29 cis:trans ratio was observed for the hexatrienes resulting from an a-lithioallyl benzothiazolyl
sulfone and an a,b-unsaturated aldehyde. This ratio was increased to 82:18 employing
the a-potassioallyl benzothiazolyl sulfone
<A NAME="RG39004ST-3E">3e</A> Note added in proof: A 75:25 cis:trans ratio has been published recently for the (Sylvestre) Julia olefination of a multiply
conjugated aldehyde with an α-sodiopentadienyl benzothiazolyl sulfone:
Furuichi N.
Hara H.
Osaki T.
Nakano M.
Mori H.
Katsumura S.
J. Org. Chem.
2004,
69:
7949
<A NAME="RG39004ST-4">4</A> (Sylvestre) Julia olefinations with the sodium derivatives of cyclopropylcarbinyl
benzothiazolyl sulfone are a notable exception showing solvent-dependent trans:cis ratios (78:22 in DMF - 9:91 in toluene or CH2Cl2):
Charette AB.
Lebel H.
J. Am. Chem. Soc.
1996,
118:
10327
<A NAME="RG39004ST-5">5</A> Modified (Sylvestre) Julia olefinations with alkyl N-phenyltetrazolyl sulfones:
Blakemore PR.
Cole WJ.
Kocienski PJ.
Morley A.
Synlett
1998,
26
<A NAME="RG39004ST-6">6</A> Modified (Sylvestre) Julia olefinations with alkyl N-tert-butyltetrazolyl sulfones:
Kocienski PJ.
Bell A.
Blakemore PR.
Synlett
2000,
365
<A NAME="RG39004ST-7A">7a</A> Modified (Sylvestre) Julia olefinations with alkyl 2-pyridyl sulfones:
Charette AB.
Bethelette C.
St-Martin D.
Tetrahedron Lett.
2001,
42:
5149
<A NAME="RG39004ST-7B">7b</A> Corrigendum:
Charette AB.
Bethelette C.
St-Martin D.
Tetrahedron Lett.
2001,
42:
6619
<A NAME="RG39004ST-8">8</A> Review:
Blakemore PR.
J. Chem. Soc., Perkin Trans. 1
2002,
2563
<A NAME="RG39004ST-9">9</A>
Kende AS.
Mendoza JS.
Tetrahedron Lett.
1990,
31:
7105
<A NAME="RG39004ST-10A">10a</A>
Lankat R.
Diplomarbeit
Universität Würzburg:
1992.
p.25
<A NAME="RG39004ST-10B">10b</A>
Lankat R.
Diplomarbeit
Universität Würzburg:
1992.
p.28
<A NAME="RG39004ST-11">11</A>
Vaz B.
Alvarez R.
de Lera AR.
J. Org. Chem.
2002,
67:
5040
<A NAME="RG39004ST-12A">12a</A>
Brückner R.
Siegel K.
Sorg A. In Strategies and Tactics in Organic Synthesis
Vol. 5:
Harmata M.
Elsevier;
Amsterdam:
2004.
p.437-473
<A NAME="RG39004ST-12B">12b</A>
Sorg, A.; Siegel, K.; Brückner, R. Chem.-Eur. J. in press.
<A NAME="RG39004ST-13">13</A>
3,8-Dimethyl-1,10-bis(tributylstannyl)-1,3,5,7,9-decapentaene as a 94:6 mixture of
cis-3 and trans-3: At
-78 °C KHMDS (1.0 M in THF, 0.26 mL, 0.26 mmol, 1.12 equiv) was added to a solution
of sulfone 1f (147.3 mg, 0.259 mmol, 1.12 equiv) and aldehyde 2 (89.0 mg, 0.231 mmol, 1.00 equiv) in THF (1.5 mL), resulting in a purple solution.
This solution was warmed to r.t. over a period of 2 h. Pentane (4 mL) and brine (2
mL) were added. The aqueous phase was extracted with pentane (2 × 2 mL) and the combined
organic extracts were washed with brine (2 mL). After drying with Na2SO4 the solvent was removed in vacuo. Flash chromatography [Al2O3 (deactivated with 3% H2O), cyclohexane: Et3N = 200:2] afforded the title compound (142.2 mg, 63%; ref.
[11]
: 83%) as a 94:6 mixture of cis-3 and trans-3 as a yellow oil. IR (film): n = 2955, 2925, 2870, 2855, 1560, 1465, 1455, 1375, 1070,
1005, 980, 960, 880, 875, 865, 760, 690, 665, 595 cm-1. 1H NMR (499.9 MHz, C6HD5 as internal standard in C6D6): δ = ca. 0.91-1.09 (m, 6 × SnCH
2
CH2CH2CH3), in part superimposed by 0.93 (t, J
vic = 7.3 Hz, 6 × SnCH2CH2CH2CH
3
), 1.38 (tq, both J
vic = 7.6 Hz, 6 × SnCH2CH2CH
2
CH3), 1.54-1.72 (m, 6 × SnCH2CH
2
CH2CH3), 1.87 (d, J
allyl = 0.6 Hz, 3-CH3, 8-CH3), 6.44 (mc, 5-H, 6-H), 6.53 (d, J
1,2 and J
10,9 = 19.1 Hz, flanked by Sn isotope satellites as 2 interlocked d, 2
J
¹¹9
Sn,H = 69.8 Hz, 2
J
¹¹7
Sn,H = 66.3 Hz, 1-H, 10-H), 6.85 (br d, J
4,5 and J
7,6 = 8.2 Hz, 4-H, 7-H), 6.94 (d, J
2,1 and J
9,10 = 19.2 Hz, flanked by Sn isotope satellites as 2 interlocked d, 3
J
¹¹9
Sn,H = 64.9 Hz, 3
J
¹¹7
Sn,H = 62.1 Hz, 2-H, 9-H). 13C NMR (125.7 MHz, C6HD5 as internal standard in C6D6): δ = 9.89 (flanked by Sn isotope satellites as 2 d, 1
J
¹¹9
Sn,C-1
′′ = 342.1 Hz, 1
J
¹¹7
Sn,C-1
′′ = 327.0 Hz, SnCH2CH2CH2CH3), 12.01 (3-CH3, 8-CH3), 13.90 (SnCH2CH2CH2
CH
3
), 27.69 (flanked by Sn isotope satellites as 1 d, 3
J
¹¹9
Sn,C-3
′′ = 3
J
¹¹7
Sn,C-3
′′ = 54.2 Hz, SnCH2CH2
CH2CH3), 29.58 (flanked by Sn isotope satellites as 1 d, 2
J
¹¹9
Sn,C-2
′′ = 2
J
¹¹7
Sn,C-2
′′ = 20.6 Hz, SnCH2
CH2CH2CH3), 126.63 (C-5, C-6), 126.93 (C-4, C-7), 128.93 (C-1, C-10), 137.95 (half intensity,
C-3, C-8), 151.69 (flanked by Sn isotope satellites as 1 d, 2
J
¹¹9
Sn,C-2 = 2
J
¹¹7
Sn,C-2 and 2
J
¹¹9
Sn,C-9 = 2
J
¹¹7
Sn,C-9 = 10.9 Hz, C-2, C-9). The cis configuration of the C5=C6 double bond was proved by an edited HSQC experiment (‘1H-coupled short-range H,C-COSY’, 499.9/125.7 MHz, C6D6): The 13C signal at δ = 126.63 (C-5/C-6), split by 1
J
C-5,5-H = 1
J
C-6,6-H = 155.8 Hz, revealed the H,H coupling constants J
5,4 = J
5,6 and J
6,7 =
J
6,5 = 11.2 Hz. HRMS (EI, 70 eV): m/z = 681.26813 [M+ - Bu], which is 3.89 ppm more than calcd for C32H59Sn2 (m/z = 681.26548).
<A NAME="RG39004ST-14">14</A>
Sorg, A. Dissertation; Universität Freiburg, 2004.
<A NAME="RG39004ST-15">15</A>
All new compounds gave satisfactory 1H NMR and 13C NMR spectra and provided correct combustion analyses or high resolution mass spectra.
<A NAME="RG39004ST-16A">16a</A> H2O2 oxidation/Mo(VI) catalysis:
Schultz HS.
Freyermuth HB.
Buc SR.
J. Org. Chem.
1963,
28:
1140
<A NAME="RG39004ST-16B">16b</A>
H2O2 oxidation/(NH4)6Mo7O24 catalysis: see ref.3b
<A NAME="RG39004ST-17">17</A>
Still WC.
Kahn M.
Mitra A.
J. Org. Chem.
1978,
43:
2923
<A NAME="RG39004ST-18">18</A>
Cis:trans ratios up to >99:1 for (Sylvestre) Julia olefinations of pentanal or octanal with
(γ-butylpropargyl) benzothiazolyl sulfone, LiBr, and LDA in THF: see ref.3c
<A NAME="RG39004ST-19">19</A>
Williams DR.
Clark MP.
Tetrahedron Lett.
1999,
40:
2291
<A NAME="RG39004ST-20">20</A>
After terminating the present study, we learned that Professor de Lera and associates
observed cis-selective (Sylvestre) Julia olefinations, too, starting from a series of polyenyl
benzothiazolyl sulfones including sulfone 1f. In their study, these authors (Vaz, B.; Alvarez, R.; Souto, J. A.; de Lera, A. R.
Synlett 2005, following paper) had independently revised the stereochemical outcome of their olefination
1f + 2 → 3 in favor of the selectivity depicted in Scheme
[1]
.
<A NAME="RG39004ST-21">21</A>
Rzasa RM.
Shea HA.
Romo D.
J. Am. Chem. Soc.
1998,
120:
591
<A NAME="RG39004ST-22">22</A>
Kiehl A.
Eberhardt A.
Adam M.
Enkelmann V.
Müllen K.
Angew. Chem., Int. Ed. Engl.
1992,
31:
1588 ; Angew. Chem. 1992, 104, 1623
<A NAME="RG39004ST-23">23</A>
Brückner S.
Abraham E.
Klotz P.
Suffert J.
Org. Lett.
2002,
4:
3391
<A NAME="RG39004ST-24">24</A>
Lipshutz BH.
Lindsley C.
J. Am. Chem. Soc.
1997,
119:
4555
<A NAME="RG39004ST-25">25</A>
Siegel K.
Brückner R.
Synlett
1999,
1227
<A NAME="RG39004ST-26">26</A>
Domon L.
Uguen D.
Tetrahedron Lett.
2000,
41:
5501
<A NAME="RG39004ST-27">27</A>
Lipshutz BL.
Lee JI.
Tetrahedron Lett.
1991,
32:
7211
<A NAME="RG39004ST-28">28</A>
Alvarez R.
Herrero M.
Lopez S.
de Lera AR.
Tetrahedron
1998,
54:
6793