References
For reviews involving the generation and application of α-lithioamines, see:
<A NAME="RU28804ST-1A">1a</A>
Gant TG.
Meyers AI.
Tetrahedron
1994,
50:
2297
<A NAME="RU28804ST-1B">1b</A>
Beak P.
Basu A.
Gallagher DJ.
Park YS.
Thayumanavan S.
Acc. Chem. Res.
1996,
29:
552
<A NAME="RU28804ST-1C">1c</A>
Gawley RE.
Curr. Org. Chem.
1997,
1:
71
<A NAME="RU28804ST-1D">1d</A>
Kessar SV.
Singh P.
Chem. Rev.
1997,
97:
721
<A NAME="RU28804ST-1E">1e</A>
Katritzky A.
Qi M.
Tetrahedron
1998,
54:
2647
<A NAME="RU28804ST-1F">1f</A>
Husson HP.
Royer J.
Chem. Soc. Rev.
1999,
28:
383
<A NAME="RU28804ST-1G">1g</A>
Rassu G.
Zanardi F.
Battistini L.
Casiraghi G.
Chem. Soc. Rev.
2000,
29:
109
For representative approaches to optically active α-lithiopyrrolidines and α-lithiopiperidines,
see:
<A NAME="RU28804ST-2A">2a</A>
Meyers AI.
Dickman DA.
Bailey TR.
J. Am. Chem. Soc.
1985,
107:
7974
<A NAME="RU28804ST-2B">2b</A>
Huang P.-Q.
Arseniyadis S.
Husson H.-P.
Tetrahedron Lett.
1987,
28:
547
<A NAME="RU28804ST-2C">2c</A>
Gawley RE.
Hart GC.
Bartolotti LJ.
J. Org. Chem.
1989,
54:
175
<A NAME="RU28804ST-2D">2d</A>
Pearson WH.
Lindbeck AC.
Kampf JW.
J. Am. Chem. Soc.
1993,
115:
2622
<A NAME="RU28804ST-2E">2e</A>
Wu S.
Lee S.
Beak P.
J. Am. Chem. Soc.
1996,
118:
715
<A NAME="RU28804ST-2F">2f</A>
Coldham I.
Hufton R.
Snowden D.
J. Am. Chem. Soc.
1996,
118:
5322
<A NAME="RU28804ST-2G">2g</A>
Dearden MJ.
Firkin CR.
Hermet J.-PR.
O’Brien P.
J. Am. Chem. Soc.
2002,
124:
11870
<A NAME="RU28804ST-2H">2h</A>
Wiberg KB.
Bailey WF.
Angew. Chem. Int. Ed.
2000,
39:
2127
<A NAME="RU28804ST-2I">2i</A>
Watson RT.
Gore VK.
Chandupatla KR.
Dieter RK.
Snyder JP.
J. Org. Chem.
2004,
69:
6105
<A NAME="RU28804ST-3">3</A> For a racemic synthetic equivalent to synthon 2 (X = O), see:
Thompson SHJ.
Subramanian RS.
Roberts JK.
Hadley MS.
J. Chem. Soc., Chem. Commun.
1994,
933
For chiral non-racemic synthetic equivalents to synthon 2 (X = O), see:
<A NAME="RU28804ST-4A">4a</A>
Huang P.-Q.
Wu T.-J.
Ruan Y.-P.
Org. Lett.
2003,
5:
4341
<A NAME="RU28804ST-4B">4b</A>
Huang P.-Q.
Deng J.
Synlett
2004,
247
<A NAME="RU28804ST-5">5</A>
Beak P.
Lee WK.
J. Org. Chem.
1993,
58:
1109
<A NAME="RU28804ST-6A">6a</A>
Sunose M.
Peakman TM.
Charmant JPH.
Gallagher T.
Macdonald SJF.
Chem. Commun.
1998,
1723
<A NAME="RU28804ST-6B">6b</A>
Pandey G.
Chakrabarti D.
Tetrahedron Lett.
1998,
39:
8371 ; and references cited therein
For approaches to optically active 2-substituted 3-aminopyrrolidines, see:
<A NAME="RU28804ST-7A">7a</A>
Iwanami S.
Takashima M.
Hirata Y.
Hasegawa O.
Usuda S.
J. Med. Chem.
1981,
24:
1224
<A NAME="RU28804ST-7B">7b</A>
Drugs Future
1991,
16:
95
<A NAME="RU28804ST-7C">7c</A>
Andres CJ.
Lee PH.
Nguyen TH.
Meyers AI.
J. Org. Chem.
1995,
60:
3189
<A NAME="RU28804ST-7D">7d</A>
Huang P.-Q.
Wang SL.
Ye JL.
Ruan YP.
Huang YQ.
Zheng H.
Gao J.
Tetrahedron
1998,
54:
12547
<A NAME="RU28804ST-7E">7e</A>
Borthwick AD.
Crame AJ.
Davies DE.
Exall AM.
Jackson DL.
Mason AM.
Pennell AMK.
Weingarten GG.
Synlett
2000,
504
<A NAME="RU28804ST-7F">7f</A>
Cooke JWB.
Berry MB.
Caine DM.
Cardwell KS.
Cook JS.
Hodgson A.
J. Org. Chem.
2001,
66:
334
<A NAME="RU28804ST-7G">7g</A>
Andrews DM.
Carey SJ.
Chaignot H.
Coomber BA.
Gray NM.
Hind SL.
Jones PS.
Mills G.
Robinson JE.
Slater MJ.
Org. Lett.
2002,
4:
4475
For approaches to racemic 2-substituted 3-aminopyrrolidines, see:
<A NAME="RU28804ST-8A">8a</A>
MacDonald SJF.
Clarke GDE.
Dowle MD.
Harrison LA.
Hodgson ST.
Inglis GGA.
Johnson MR.
Shah P.
Upton RJ.
Walls SB.
J. Org. Chem.
1999,
64:
5166
<A NAME="RU28804ST-8B">8b</A>
Norton Matos MRP.
Afonso CAM.
Batey RA.
Tetrahedron Lett.
2001,
42:
7007
<A NAME="RU28804ST-8C">8c</A>
Suero R.
Gorgojo JM.
Aurrecoechea M.
Tetrahedron
2002,
58:
6211
<A NAME="RU28804ST-9">9</A>
Flynn DL.
Zabrowski DL.
Becker DP.
Nosal R.
Villamil CI.
Gullickson GW.
Moummi C.
Yang D.-C.
J. Med. Chem.
1992,
35:
1489
<A NAME="RU28804ST-10A">10a</A> For a recent asymmetric synthesis of 1-aminopyrrolizidine, see:
Giri N.
Petrini M.
Profeta R.
J. Org. Chem.
2004,
69:
7303
<A NAME="RU28804ST-10B">10b</A> For an approach to optically active 1-aminopyrrolizidin-3-one derivative, see:
Langlois N.
Radom M.-O.
Tetrahedron Lett.
1998,
39:
857
For approaches to racemic 1-aminopyrrolizidines, see:
<A NAME="RU28804ST-11A">11a</A>
Suri KA.
Suri OP.
Sawhney RS.
Gupta OP.
Atal CK.
Indian J. Chem., Sect. B
1977,
15:
972
<A NAME="RU28804ST-11B">11b</A>
Suri KA.
Suri OP.
Atal CK.
Indian J. Chem., Sect. B
1983,
22:
822
<A NAME="RU28804ST-11C">11c</A>
Zabrowski DL.
Becker DP.
Nosal R.
Villamil CI.
Gullikson GW.
Moummi C.
Yang D.-C.
J. Med. Chem.
1992,
35:
1486
<A NAME="RU28804ST-11D">11d</A>
Ref.
[13]
<A NAME="RU28804ST-12">12</A>
Ikhiri K.
Ahond A.
Poupat C.
Potier P.
Pusset J.
Sévenet T.
J. Nat. Prod.
1987,
50:
626
<A NAME="RU28804ST-13">13</A> For preparation of both enantiomers of absouline by racemic synthesis followed
by chiral HPLC separation, see:
Christine C.
Ikhiri K.
Ahond A.
Mourabit AA.
Poupat C.
Potier P.
Tetrahedron
2000,
56:
1837
<A NAME="RU28804ST-14">14</A>
Neuner-Jehle N.
Nesvadba H.
Spiteller G.
Monatsh. Chem.
1965,
96:
321
<A NAME="RU28804ST-15A">15a</A>
Glass RS.
Deardorff DR.
Gains LH.
Tetrahedron Lett.
1978,
2965
<A NAME="RU28804ST-15B">15b</A>
Wilson SR.
Sawicki RA.
Huffman JC.
J. Org. Chem.
1981,
46:
3887
<A NAME="RU28804ST-15C">15c</A>
Tufariello JJ.
Merckler H.
Winzenberg K.
J. Org. Chem.
1986,
51:
3556
<A NAME="RU28804ST-16">16</A>
Huang P.-Q.
Zheng X.
Wang S.-L.
Ye J.-L.
Jin L.-R.
Chen Z.
Tetrahedron: Asymmetry
1999,
10:
3309
<A NAME="RU28804ST-17A">17a</A>
Screttas CG.
Micha-Screttas M.
J. Org. Chem.
1978,
43:
1064
<A NAME="RU28804ST-17B">17b</A>
Freeman PK.
Hutchinson LL.
J. Org. Chem.
1980,
45:
1924
<A NAME="RU28804ST-17C">17c</A>
Cohen T.
Matz JR.
J. Am. Chem. Soc.
1980,
102:
6900
<A NAME="RU28804ST-17D">17d</A>
Tsunoda T.
Fujiwara K.
Yamamoto Y.
Ito S.
Tetrahedron Lett.
1991,
32:
1975
<A NAME="RU28804ST-17E">17e</A> For reviews, see:
Cohen T.
Bhupathy M.
Acc. Chem. Res.
1989,
22:
152
<A NAME="RU28804ST-17F">17f</A>
Yus M.
Chem. Soc. Rev.
1996,
25:
155
<A NAME="RU28804ST-17G">17g</A>
Cohen T.
Pure Appl. Chem.
1996,
68:
913
For analogue glycosyl dianions, see:
<A NAME="RU28804ST-18A">18a</A>
Hoffmann M.
Kessler H.
Tetrahedron Lett.
1994,
35:
6067
<A NAME="RU28804ST-18B">18b</A>
Urban D.
Skrydstrup T.
Riche C.
Chiaroni A.
Beau JM.
Chem. Commun.
1996,
1883
<A NAME="RU28804ST-18C">18c</A>
Westermann B.
Walter A.
Diedrichs N.
Angew. Chem. Int. Ed.
1999,
38:
3384
<A NAME="RU28804ST-19">19</A>
Tang T.
Zhu C.
Huang P.-Q.
Heterocycles
2004,
64:
in press ; (http://www.heterocycles.jp/heterohtml/index.html)
<A NAME="RU28804ST-20">20</A>
Wijberg JBPA.
Schoemaker HE.
Speckamp WN.
Tetrahedron
1978,
34:
179
<A NAME="RU28804ST-21">21</A>
All new compounds gave satisfactory analytical and spectral data.
<A NAME="RU28804ST-22">22</A>
General Procedure for the One-Pot Synthesis of Compounds 10a-h:
To a solution of phenyl thioether 7 (0.48 mmol) in anhyd THF (1.6 mL) at -78 °C was added successively n-BuLi (2.0 M solution in n-hexane, 0.69 mmol) and freshly prepared lithium naphthalenide (1.5 M solution in
THF, 1.36 mmol). After being stirred for 30 min, an electrophile (0.70 mmol) was added.
The stirring was maintained at -78 °C for 1 h, then allowed to warm to 0 °C. A sat.
aq solution of NH4Cl was added and the mixture was extracted with CH2Cl2 (3 × 5 mL). The combined organic layers were dried over Na2SO4, filtered and concentrated in vacuo. Flash chromatography (EtOAc-petroleum ether
= 1:3) of the crude afforded the desired product 10b-i and a small amount of reduced product 10a.
Data for 10b: Electrophile used: acetone. Yield 86%; colorless oil; [α]D
20 -4.95 (c 1.0, CHCl3). IR (film): νmax = 3421, 3319, 2975, 1697, 1669, 1535, 1399, 1246, 1170, 1122 cm-1. 1H NMR (500 MHz, CDCl3): δ(rotamers) = 1.15 (br s, 3 H), 1.34 (br s, 3 H), 1.48 (s, 9 H), 1.68-1.78 (m,
1 H), 2.20-2.32 (m, 1 H), 3.28-3.36 (m, 1 H), 3.60-3.80 (m, 2 H), 4.10-4.20 (m, 1
H), 4.80-5.00 (m, 2 H), 5.10 (m, 2 H), 7.28-7.40 (m, 5 H). 13C NMR (125 MHz, DMSO-d
6): δ(rotamers) = 28.26 (1 C), 28.38 (1 C), 29.58 (3 C), 30.19, 30.66, 31.10 (1 C),
43.88, 44.15 (1 C), 49.89 (1 C), 50.38, 50.68 (1 C), 65.57, 65.70 (1 C), 72.22 (1
C), 78.51, 78.83 (1 C), 128.00, 128.06, 128.48, 128.57, 137.23, 137.38 (6 C), 153.72
(1 C), 155.68, 155.97 (1 C). MS (ESI): m/z (%) = 379 (100) [M + H+], 401 (60) [M + Na+]. HRMS: m/z calcd for [C20H30N2O5 + H]+: 379.2234; found: 379.2233.
<A NAME="RU28804ST-23">23</A>
Rychnovsky SD.
Skalitzky DJ.
J. Org. Chem.
1992,
57:
4336
<A NAME="RU28804ST-24">24</A>
Sibi MP.
Christensen JW.
J. Org. Chem.
1999,
64:
6434
<A NAME="RU28804ST-25">25</A>
In the reported 1H NMR and 13C NMR spectral data of 1-aminopyrrolizidine and its derivatives (13,
[10a]
14,
[10a]
[12]
4,
[11]
[12]
and 5
[11]
[12]
), some differences exist from one to the other. This may be due to conformational
isomerism and/or H-bond formation in the 1-aminopyrrolizidine ring system. In addition,
these molecules were shown to be labile.
<A NAME="RU28804ST-26">26</A>
We thank Dr. C. Poupat (Institut de Chimie des Substances Naturelles, CNRS, France)
for sending us a sample of natural absouline.