Each megakaryocyte forms 10[3] platelets and 10[11] platelets are replenished daily. The unique and amazing mechanisms that allow megakaryocytes
to become giant and polyploid and to release such a large number of platelets are
still poorly understood. The study of inherited thrombocytopenias offers the possibility
to gain new information on these processes because several different forms, deriving
from defective megakaryocytic commitment, differentiation, maturation, or platelet
formation, have been identified. Moreover, in the presence of some genetic defects,
megakaryocytes produce platelets with a shortened life span. In this review, we summarize
what we have learned about inherited thrombocytopenias in the last few years.
KEYWORDS
Platelets - megakaryocytes - inherited thrombocytopenias - bleeding - pathogenesis
REFERENCES
- 1
Balduini C L, Iolascon A, Savoia A.
Inherited thrombocytopenias: from genes to therapy.
Haematologica.
2002;
87
860-880
- 2
Kuter D J, Begley C G.
Recombinant human thrombopoietin: basic biology and evaluation of clinical studies.
Blood.
2002;
100
3457-3469
- 3
Ballmaier M, Germeshausen M, Schulze H et al..
c-mpl mutations are the cause of congenital amegakaryocytic thrombocytopenia.
Blood.
2001;
97
139-146
- 4
Ihara K, Ishii E, Eguchi M et al..
Identification of mutations in the c-mpl gene in congenital amegakaryocytic thrombocytopenia.
Proc Natl Acad Sci USA.
1999;
96
3132-3136
- 5
Fox N, Priestley G, Papayannopoulou T et al..
Thrombopoietin expands hematopoietic stem cells after transplantation.
J Clin Invest.
2002;
110
389-394
- 6
Carver-Moore K, Broxmeyer H E, Luoh S M et al..
Low levels of erythroid and myeloid progenitors in thrombopoietin- and c-mpl-deficient
mice.
Blood.
1996;
88
803-808
- 7
Greenhalgh K L, Howell R T, Bottani A et al..
Thrombocytopenia-absent radius syndrome: a clinical genetic study.
J Med Genet.
2002;
39
876-881
- 8
Letestu R, Vitrat N, Masse A et al..
Existence of a differentiation blockage at the stage of a megakaryocyte precursor
in the thrombocytopenia and absent radii (TAR) syndrome.
Blood.
2000;
95
1633-1641
- 9
Strippoli P, Savoia A, Iolascon A et al..
Mutational screening of thrombopoietin receptor gene (c-mpl) in patients with congenital
thrombocytopenia and absent radii (TAR).
Br J Haematol.
1998;
103
311-314
- 10
Fleischman R A, Letestu R, Mi X et al..
Absence of mutations in the HoxA10, HoxA11 and HoxD11 nucleotide coding sequences
in thrombocytopenia with absent radius syndrome.
Br J Haematol.
2002;
116
367-375
- 11
Thompson A A, Woodruff K, Feig S A et al..
Congenital thrombocytopenia and radio-ulnar synostosis: a new familial syndrome.
Br J Haematol.
2001;
113
866-870
- 12
Thorsteinsdottir U, Sauvageau G, Hough M R et al..
Overexpression of HOXA10 in murine hematopoietic cells perturbs both myeloid and lymphoid
differentiation and leads to acute myeloid leukemia.
Mol Cell Biol.
1997;
17
495-505
- 13
Davis A P, Witte D P, Hsieh-Li H M et al..
Absence of radius and ulna in mice lacking hoxa-11 and hoxd-11.
Nature.
1995;
375
791-795
- 14
Thompson A A, Nguyen L T.
Amegakaryocytic thrombocytopenia and radio-ulnar synostosis are associated with HOXA11
mutation.
Nat Genet.
2000;
26
397-398
- 15
Small K M, Potter S S.
Homeotic transformations and limb defects in Hox A11 mutant mice.
Genes Dev.
1993;
7
2318-2328
- 16
Song W J, Sullivan M G, Legare R D et al..
Haploinsufficiency of CBFA2 causes familial thrombocytopenia with propensity to develop
acute myelogenous leukaemia.
Nat Genet.
1999;
23
166-175
- 17
Harada H, Harada Y, Tanaka H et al..
Implications of somatic mutations in the AML1 gene in radiation-associated and therapy-related
myelodysplastic syndrome/acute myeloid leukemia.
Blood.
2003;
101
673-680
- 18
Imai Y, Kurokawa M, Izutsu K et al..
Mutations of the AML1 gene in myelodysplastic syndrome and their functional implications
in leukemogenesis.
Blood.
2000;
96
3154-3160
- 19
Michaud J, Wu F, Osato M et al..
In vitro analyses of known and novel RUNX1/AML1 mutations in dominant familial platelet
disorder with predisposition to acute myelogenous leukemia: implications for mechanisms
of pathogenesis.
Blood.
2002;
99
1364-1372
- 20
Okuda T, van Deursen J, Hiebert S W et al..
AML1, the target of multiple chromosomal translocations in human leukemia, is essential
for normal fetal liver hematopoiesis.
Cell.
1996;
84
321-330
- 21
Wang Q, Stacy T, Binder M et al..
Disruption of the Cbfa2 gene causes necrosis and hemorrhaging in the central nervous
system and blocks definitive hematopoiesis.
Proc Natl Acad Sci USA.
1996;
93
3444-3449
- 22
Chang A N, Cantor A B, Fujiwara Y et al..
GATA-factor dependence of the multitype zinc-finger protein FOG-1 for its essential
role in megakaryopoiesis.
Proc Natl Acad Sci USA.
2002;
99
9237-9242
- 23
Freson K, Devriendt K, Matthijs G et al..
Platelet characteristics in patients with X-linked macrothrombocytopenia because of
a novel GATA1 mutation.
Blood.
2001;
98
85-92
- 24
Freson K, Matthijs G, Thys C et al..
Different substitutions at residue D218 of the X-linked transcription factor GATA1
lead to altered clinical severity of macrothrombocytopenia and anemia and are associated
with variable skewed X inactivation.
Hum Mol Genet.
2002;
11
147-152
- 25
Mehaffey M G, Newton A L, Gandhi M J et al..
X-linked thrombocytopenia caused by a novel mutation of GATA-1.
Blood.
2001;
98
2681-2688
- 26
Nichols K E, Crispino J D, Poncz M et al..
Familial dyserythropoietic anaemia and thrombocytopenia due to an inherited mutation
in GATA1.
Nat Genet.
2000;
24
266-270
- 27
Balduini C L, Pecci A, Loffredo G et al..
Effects of R216Q mutation of GATA-1 on erythropoiesis and platelet production.
Thromb Haemost.
2004;
91
129-140
- 28
Yu C, Niakan K K, Matsushita M et al..
X-linked thrombocytopenia with thalassemia from a mutation in the amino finger of
GATA-1 affecting DNA binding rather than FOG-1 interaction.
Blood.
2002;
100
2040-2045
- 29
McDevitt M A, Shivdasani R A, Fujiwara Y et al..
A “knockdown” mutation created by cis-element gene targeting reveals the dependence
of erythroid cell maturation on the level of transcription factor GATA-1.
Proc Natl Acad Sci USA.
1997;
94
6781-6785
- 30
Vyas P, Ault K, Jackson C W et al..
Consequences of GATA-1 deficiency in megakaryocytes and platelets.
Blood.
1999;
93
2867-2875
- 31
Breton-Gorius J, Favier R, Guichard J et al..
A new congenital dysmegakaryopoietic thrombocytopenia (Paris-Trousseau) associated
with giant platelet alpha-granules and chromosome 11 deletion at 11q23.
Blood.
1995;
85
1805-1814
- 32
Penny L A, Dell’Aquila M, Jones M C et al..
Clinical and molecular characterization of patients with distal 11q deletions.
Am J Hum Genet.
1995;
56
676-683
- 33
Gangarossa S, Mattina T, Romano V et al..
Micromegakaryocytes in a patient with partial deletion of the long arm of chromosome
11 [del(11)(q24.2qter)] and chronic thrombocytopenic purpura.
Am J Med Genet.
1996;
62
120-123
- 34
Krishnamurti L, Neglia J P, Nagarajan R et al..
Paris-Trousseau syndrome platelets in a child with Jacobsen’s syndrome.
Am J Hematol.
2001;
66
295-299
- 35
Bartel F O, Higuchi T, Spyropoulos D D.
Mouse models in the study of the Ets family of transcription factors.
Oncogene.
2000;
19
6443-6454
- 36
Eisbacher M, Holmes M L, Newton A et al..
Protein-protein interaction between Fli-1 and GATA-1 mediates synergistic expression
of megakaryocyte-specific genes through cooperative DNA binding.
Mol Cell Biol.
2003;
23
3427-3441
- 37
Iolascon A, Perrotta S, Amendola G et al..
Familial dominant thrombocytopenia: clinical, biologic, and molecular studies.
Pediatr Res.
1999;
46
548-552
- 38
Savoia A, Del Vecchio M, Totaro A et al..
An autosomal dominant thrombocytopenia gene maps to chromosomal region 10p.
Am J Hum Genet.
1999;
65
1401-1405
- 39
Drachman J G, Jarvik G P, Mehaffey M G.
Autosomal dominant thrombocytopenia: incomplete megakaryocyte differentiation and
linkage to human chromosome 10.
Blood.
2000;
96
118-125
- 40
Gandhi M J, Cummings C L, Drachman J G.
FLJ14813 missense mutation: a candidate for autosomal dominant thrombocytopenia on
human chromosome 10.
Hum Hered.
2003;
55
66-70
- 41
Von Behrens W E.
Mediterranean macrothrombocytopenia.
Blood.
1975;
46
199-208
- 42
Najean Y, Lecompte T.
Genetic thrombocytopenia with autosomal dominant transmission: a review of 54 cases.
Br J Haematol.
1990;
74
203-208
- 43
Fabris F, Cordiano I, Salvan F et al..
Chronic isolated macrothrombocytopenia with autosomal dominant transmission: a morphological
and qualitative platelet disorder.
Eur J Haematol.
1997;
58
40-45
- 44
Savoia A, Balduini C L, Savino M et al..
Autosomal dominant macrothrombocytopenia in Italy is most frequently a type of heterozygous
Bernard-Soulier syndrome.
Blood.
2001;
97
1330-1335
- 45
Fabris F, Fagioli F, Basso G, Girolami A.
Autosomal dominant macrothrombocytopenia with ineffective thrombopoiesis.
Haematologica.
2002;
87
ELT27
- 46
Hartwig J, Italiano J R.
The birth of the platelet.
J Thromb Haemost.
2003;
1
1580-1586
- 47 Ware J W, Ruggeri Z M. Platelet receptors: von Willebrand factor. In: Gresele P,
Page CP, Fuster V, Vermylen J Platelets Cambridge, UK; Cambridge University Press
2002: 179-187
- 48
Jackson S P, Nesbitt W S, Kulkurni S.
Signaling events underlying thrombus formation.
J Thromb Haemost.
2003;
1
1602-1612
- 49
Lopez J A, Andrews R K, Afshar-Kharghan V, Berndt M C.
Bernard-Soulier syndrome.
Blood.
1998;
91
4397-4418
- 50
Bernard J.
History of congenital hemorrhagic thrombocytopathic dystrophy.
Blood Cells.
1983;
9
179-193
- 51
White J G, Burris S M, Tukey D, Smith C, Clawson C C.
Micropipette aspiration of human platelets: influence of microtubules and actin filaments
on deformability.
Blood.
1984;
64
210-214
- 52
Nurden A T, Combriè R, Claeyssens S, Nurden P.
Heterozygotes in the Bernard-Soulier syndrome do not necessarily have giant platelets
or thrombocytopenia.
Br J Haematol.
2003;
120
716-719
- 53
Ware J, Russell S, Ruggeri Z M.
Generation and rescue of a murine model of platelet dysfunction: the Bernard-Soulier
syndrome.
Proc Natl Acad Sci USA.
2000;
97
2803-2808
- 54
Berg S B, Powell B C, Cheney R E.
A millennial myosin census.
Mol Biol Cell.
2001;
12
780-794
- 55
Leala A, Endelea S, Stengela C et al..
A novel myosin heavy chain gene in human chromosome 19q13.3
Gene.
2003;
312
165-171
- 56
Maupin P, Phillips C L, Adelstein R S, Pollard T D.
Differential localization of myosin-II isozymes in human cultured cells and blood
cells.
J Cell Sci.
1994;
107
3077-3090
- 57
Mansfield P J, Shayman J A, Boxer L A.
Regulation of polymorphonuclear leukocyte phagocytosis by myosin light chain kinase
after activation of mitogen-activated protein kinase.
Blood.
2000;
95
2407-2412
- 58
Seri M, Pecci A, Di Bari F et al..
MYH9-related disease: May-Hegglin anomaly, Sebastian syndrome, Fechtner syndrome,
and Epstein syndrome are not distinct entities but represent a variable expression
of a single illness.
Medicine.
2003;
82
203-215
- 59
Pecci A, Noris P, Invernizzi R et al..
Immunocytochemistry for the heavy chain of the non-muscle myosin IIA as a diagnostic
tool for MYH9-related disorders.
Br J Haematol.
2002;
117
164-167
- 60
Hu A, Wang F, Sellers J R.
Mutations in human nonmuscle myosin IIA found in patients with May-Hegglin anomaly
and Fechtner syndrome result in impaired enzymatic function.
J Biol Chem.
2002;
277
46512-46517
- 61
Deutsch S, Rideau A, Bochaton-Piallat M et al..
Asp1424Asn MYH9 mutation results in an unstable protein responsible for the phenotypes
in May-Hegglin anomaly/Fechtner syndrome.
Blood.
2003;
102
529-534
- 62
Kunishima S, Matsushita T, Kojima T et al..
Nonmuscle myosin heavy chain-A in MYH9 disorders: Association of subcellular localization
with MYH9 mutations.
Lab Invest.
2003;
83
115-122
- 63
Ghiggeri G M, Caridi G, Magrini U et al..
Genetics, clinical and pathological features of glomerulonephritis associated with
mutations of non-muscle myosin IIA (Fechtner syndrome).
Am J Kidney Dis.
2003;
41
95-104
- 64
Kunishima S, Heaton D C, Naoe T et al..
De novo mutation of the platelet glycoprotein Ib alpha gene in a patient with pseudo-von
Willebrand disease.
Blood Coagul Fibrinolysis.
1997;
8
311-315
- 65
Nurden P, Chretien F, Poujol C et al..
Platelet ultrastructural abnormalities in three patients with type 2B von Willebrand
disease.
Br J Haematol.
2000;
110
704-714
- 66
Snapper S B, Rosen F S.
A family of WASPs.
N Engl J Med.
2003;
348
350-351
- 67
Haddad E, Cramer E, Riviere C et al..
The thrombocytopenia of Wiskott Aldrich syndrome is not related to a defect in proplatelet
formation.
Blood.
1999;
94
509-518
- 68
Kajiwara M, Nonoyama S, Eguchi M et al..
WASP is involved in proliferation and differentiation of human haemopoietic progenitors
in vitro.
Br J Haematol.
1999;
107
254-262
- 69
Zhang J, Shehabeldin A, Cruz L A et al..
Antigen receptor-induced activation and cytoskeletal rearrangement are impaired in
Wiskott-Aldrich syndrome protein-deficient lymphocytes.
J Exp Med.
1999;
190
1329-1342
- 70
Schmitt A, Jouault H, Drouin A et al..
Pathological interaction between megakaryocytes and PMN leukocytes in myelofibrosis.
Blood.
2000;
96
1342-1347
- 71
Jantunen E, Hanninen A, Naukkarinen A, Vornanen M, Lahtinen R.
Gray platelet syndrome with splenomegaly and signs of extramedullary hematopoiesis:
a case report with review of the literature.
Am J Hematol.
1994;
46
218-224
- 72
Falik-Zaccai T C, Anikster Y, Rivera C E et al..
A new genetic isolate of gray platelet syndrome (GPS): clinical, cellular, and hematologic
characteristics.
Mol Genet Metab.
2001;
74
303-313
- 73
Kohler M, Hellstern P, Morgenstern E et al..
Gray platelet syndrome: selective alpha-granules deficiency and thrombocytopenia due
to increased platelet turnover.
Blut.
1985;
50
331-340
- 74
Pestina T I, Jackson C W, Stenberg P E.
Abnormal subcellular distribution of myosin and talin in Wistar Furth rat platelets.
Blood.
1995;
85
2436-2446
- 75
Lacombe M, d’Angelo G.
Etudes sur une thrombopathie familiale.
Nouv Rev Fr Hematol.
1963;
3
611-614
- 76
Okita J R, Frojmovic M M, Kristopet S, Wong T, Kunicki T J.
Montreal platelet syndrome: a defect in calcium-activated neutral proteinase (calpain).
Blood.
1989;
74
715-721
Carlo L BalduiniM.D.
Clinica Medica III, IRCCS Policlinico San Matteo
piazzale Golgi, 27100 Pavia, Italy
Email: c.balduini@smatteo.pv.it